原始/修饰石墨烯能修复n7甲基化的鸟嘌呤病变吗?一个DFT研究。

IF 2.5 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Baharul Islam Laskar, Pradeep Kumar Shukla
{"title":"原始/修饰石墨烯能修复n7甲基化的鸟嘌呤病变吗?一个DFT研究。","authors":"Baharul Islam Laskar,&nbsp;Pradeep Kumar Shukla","doi":"10.1007/s00894-025-06419-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Graphene is considered to be a wonder material with widespread applications. However, its potential for recovering methylated DNA bases has not yet been explored. DNA methylation is implicated in the development of several health issues such as mutation, ageing, cancer and neurodegenerative diseases. The cytotoxic N7-methylated guanine (N7mG) is the most abundantly occurring methylated DNA lesion. Therefore, we have theoretically investigated the reactions of pristine, heteroatom-doped and functionalized graphene with N7mG cation with an intention to understand the efficacy of graphene in repairing this lesion. The epoxide- and thioepoxide-functionalized graphene can effectively restore guanine from the N7mG cation in both gas and aqueous phases. Pristine and BN-codoped graphene are, however, found to be unsuitable for this work. Thus, the present study offers valuable insights into how graphene may help in repairing N7mG and other modified DNA bases.</p><h3>Methods</h3><p>The calculations related to energetics, structural optimizations, natural bond orbitals (NBOs) and DOS were performed using two functionals (M06-2X and wB97X-D) of density functional theory (DFT) in association with 6-31G* and 6-31+G** basis sets, as available in the Gaussian 09 quantum chemistry code. The IEF-PCM was used for the aqueous phase calculations. The CHelpG charges were used for charge transfer analysis.\n</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can pristine/modified graphene repair N7-methylated guanine lesions? A DFT study\",\"authors\":\"Baharul Islam Laskar,&nbsp;Pradeep Kumar Shukla\",\"doi\":\"10.1007/s00894-025-06419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Graphene is considered to be a wonder material with widespread applications. However, its potential for recovering methylated DNA bases has not yet been explored. DNA methylation is implicated in the development of several health issues such as mutation, ageing, cancer and neurodegenerative diseases. The cytotoxic N7-methylated guanine (N7mG) is the most abundantly occurring methylated DNA lesion. Therefore, we have theoretically investigated the reactions of pristine, heteroatom-doped and functionalized graphene with N7mG cation with an intention to understand the efficacy of graphene in repairing this lesion. The epoxide- and thioepoxide-functionalized graphene can effectively restore guanine from the N7mG cation in both gas and aqueous phases. Pristine and BN-codoped graphene are, however, found to be unsuitable for this work. Thus, the present study offers valuable insights into how graphene may help in repairing N7mG and other modified DNA bases.</p><h3>Methods</h3><p>The calculations related to energetics, structural optimizations, natural bond orbitals (NBOs) and DOS were performed using two functionals (M06-2X and wB97X-D) of density functional theory (DFT) in association with 6-31G* and 6-31+G** basis sets, as available in the Gaussian 09 quantum chemistry code. The IEF-PCM was used for the aqueous phase calculations. The CHelpG charges were used for charge transfer analysis.\\n</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-025-06419-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06419-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:石墨烯被认为是一种具有广泛应用的神奇材料。然而,它在恢复甲基化DNA碱基方面的潜力尚未被探索。DNA甲基化与一些健康问题的发展有关,如突变、衰老、癌症和神经退行性疾病。细胞毒性n7 -甲基化鸟嘌呤(N7mG)是最常见的甲基化DNA损伤。因此,我们从理论上研究了原始的、杂原子掺杂的和功能化的石墨烯与N7mG阳离子的反应,目的是了解石墨烯修复这种损伤的功效。环氧化物和硫环氧化物功能化的石墨烯在气相和水相中都能有效地从N7mG阳离子中恢复鸟嘌呤。然而,原始的和bn共掺杂的石墨烯被发现不适合这项工作。因此,本研究为石墨烯如何帮助修复N7mG和其他修饰的DNA碱基提供了有价值的见解。方法:利用密度泛函理论(DFT)中的两个泛函(M06-2X和wB97X-D)与高斯09量子化学代码中的6-31G*和6-31+G**基集相关的能量学、结构优化、自然键轨道(NBOs)和DOS进行计算。用IEF-PCM进行水相计算。用CHelpG电荷进行电荷转移分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can pristine/modified graphene repair N7-methylated guanine lesions? A DFT study

Context

Graphene is considered to be a wonder material with widespread applications. However, its potential for recovering methylated DNA bases has not yet been explored. DNA methylation is implicated in the development of several health issues such as mutation, ageing, cancer and neurodegenerative diseases. The cytotoxic N7-methylated guanine (N7mG) is the most abundantly occurring methylated DNA lesion. Therefore, we have theoretically investigated the reactions of pristine, heteroatom-doped and functionalized graphene with N7mG cation with an intention to understand the efficacy of graphene in repairing this lesion. The epoxide- and thioepoxide-functionalized graphene can effectively restore guanine from the N7mG cation in both gas and aqueous phases. Pristine and BN-codoped graphene are, however, found to be unsuitable for this work. Thus, the present study offers valuable insights into how graphene may help in repairing N7mG and other modified DNA bases.

Methods

The calculations related to energetics, structural optimizations, natural bond orbitals (NBOs) and DOS were performed using two functionals (M06-2X and wB97X-D) of density functional theory (DFT) in association with 6-31G* and 6-31+G** basis sets, as available in the Gaussian 09 quantum chemistry code. The IEF-PCM was used for the aqueous phase calculations. The CHelpG charges were used for charge transfer analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信