Kaywan Othman Ahmed, Nazim Abdul Nariman, Rawand Sardar Abdulrahman
{"title":"代理模型在Ogee溢洪道结构随机分析中的应用","authors":"Kaywan Othman Ahmed, Nazim Abdul Nariman, Rawand Sardar Abdulrahman","doi":"10.1002/msd2.70026","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the hydraulic performance of an Ogee spillway under varying flow rate conditions, gate opening heights, and spillway widths. Numerical simulations using Flow-3D, incorporating the (<i>k-ε</i>) turbulence model and Large Eddy Simulation (LES), were employed alongside surrogate models using MATLAB codes and LP-TAU to predict flow behavior. The analysis focused on pressure distribution, water velocity, and shear stress variations across seven sensor locations along the spillway. Results indicate that pressure distribution generally decreases with increasing flow rate but rises with greater gate opening height or spillway width. A reduction in gate opening height lowers the pressure in the initial region but increases it downstream. Two negative pressure zones were identified, one at the Ogee curve and another at the downstream sloping section, highlighting potential cavitation risks. Comparisons with experimental data confirmed a strong correlation, with minor discrepancies in specific sensors under varying conditions. The study demonstrates that numerical modeling, particularly using the (<i>k-ε</i>) turbulence model in Flow-3D, effectively assesses the hydraulic performance of controlled Ogee-type spillways.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":"290-311"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70026","citationCount":"0","resultStr":"{\"title\":\"Application of Surrogate Modeling in Stochastic Analysis of an Ogee Spillway Structure\",\"authors\":\"Kaywan Othman Ahmed, Nazim Abdul Nariman, Rawand Sardar Abdulrahman\",\"doi\":\"10.1002/msd2.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the hydraulic performance of an Ogee spillway under varying flow rate conditions, gate opening heights, and spillway widths. Numerical simulations using Flow-3D, incorporating the (<i>k-ε</i>) turbulence model and Large Eddy Simulation (LES), were employed alongside surrogate models using MATLAB codes and LP-TAU to predict flow behavior. The analysis focused on pressure distribution, water velocity, and shear stress variations across seven sensor locations along the spillway. Results indicate that pressure distribution generally decreases with increasing flow rate but rises with greater gate opening height or spillway width. A reduction in gate opening height lowers the pressure in the initial region but increases it downstream. Two negative pressure zones were identified, one at the Ogee curve and another at the downstream sloping section, highlighting potential cavitation risks. Comparisons with experimental data confirmed a strong correlation, with minor discrepancies in specific sensors under varying conditions. The study demonstrates that numerical modeling, particularly using the (<i>k-ε</i>) turbulence model in Flow-3D, effectively assesses the hydraulic performance of controlled Ogee-type spillways.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"5 2\",\"pages\":\"290-311\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Application of Surrogate Modeling in Stochastic Analysis of an Ogee Spillway Structure
This study investigates the hydraulic performance of an Ogee spillway under varying flow rate conditions, gate opening heights, and spillway widths. Numerical simulations using Flow-3D, incorporating the (k-ε) turbulence model and Large Eddy Simulation (LES), were employed alongside surrogate models using MATLAB codes and LP-TAU to predict flow behavior. The analysis focused on pressure distribution, water velocity, and shear stress variations across seven sensor locations along the spillway. Results indicate that pressure distribution generally decreases with increasing flow rate but rises with greater gate opening height or spillway width. A reduction in gate opening height lowers the pressure in the initial region but increases it downstream. Two negative pressure zones were identified, one at the Ogee curve and another at the downstream sloping section, highlighting potential cavitation risks. Comparisons with experimental data confirmed a strong correlation, with minor discrepancies in specific sensors under varying conditions. The study demonstrates that numerical modeling, particularly using the (k-ε) turbulence model in Flow-3D, effectively assesses the hydraulic performance of controlled Ogee-type spillways.