二维薄壁结构瞬态热传导和波传播的SCT-BEM

IF 3.4 Q1 ENGINEERING, MECHANICAL
Xiaotong Gao, Yan Gu
{"title":"二维薄壁结构瞬态热传导和波传播的SCT-BEM","authors":"Xiaotong Gao,&nbsp;Yan Gu","doi":"10.1002/msd2.70015","DOIUrl":null,"url":null,"abstract":"<p>Traditional boundary element method (BEM) faces significant challenges in addressing dynamic problems in thin-walled structures. These challenges arise primarily from the complexities of handling time-dependent terms and nearly singular integrals in structures with thin-shapes. In this study, we reformulate time derivative terms as domain integrals and approximate the unknown functions using radial basis functions (RBFs). This reformulation simplifies the treatment of transient terms and enhances computational efficiency by reducing the complexity of time-dependent formulations. The resulting domain integrals are efficiently evaluated using the scaled coordinate transformation BEM (SCT-BEM), which converts domain integrals into equivalent boundary integrals, thereby improving numerical accuracy and stability. Furthermore, to tackle the challenges inherent in thin-body structures, a nonlinear coordinate transformation is introduced to effectively remove the near-singular behavior of the integrals. The proposed method offers several advantages, including greater flexibility in managing transient terms, lower computational costs, and improved stability for thin-body problems.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":"266-276"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70015","citationCount":"0","resultStr":"{\"title\":\"SCT-BEM for Transient Heat Conduction and Wave Propagation in 2D Thin-Walled Structures\",\"authors\":\"Xiaotong Gao,&nbsp;Yan Gu\",\"doi\":\"10.1002/msd2.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional boundary element method (BEM) faces significant challenges in addressing dynamic problems in thin-walled structures. These challenges arise primarily from the complexities of handling time-dependent terms and nearly singular integrals in structures with thin-shapes. In this study, we reformulate time derivative terms as domain integrals and approximate the unknown functions using radial basis functions (RBFs). This reformulation simplifies the treatment of transient terms and enhances computational efficiency by reducing the complexity of time-dependent formulations. The resulting domain integrals are efficiently evaluated using the scaled coordinate transformation BEM (SCT-BEM), which converts domain integrals into equivalent boundary integrals, thereby improving numerical accuracy and stability. Furthermore, to tackle the challenges inherent in thin-body structures, a nonlinear coordinate transformation is introduced to effectively remove the near-singular behavior of the integrals. The proposed method offers several advantages, including greater flexibility in managing transient terms, lower computational costs, and improved stability for thin-body problems.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"5 2\",\"pages\":\"266-276\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的边界元法(BEM)在求解薄壁结构动力问题时面临重大挑战。这些挑战主要来自于在薄型结构中处理时间相关项和近似奇异积分的复杂性。在本研究中,我们将时间导数项重新表述为域积分,并使用径向基函数(rbf)近似未知函数。这种重新公式简化了瞬态项的处理,并通过减少时间相关公式的复杂性来提高计算效率。利用缩放坐标变换BEM (SCT-BEM)有效地计算得到的域积分,将域积分转换为等效边界积分,从而提高了数值精度和稳定性。此外,为了解决薄体结构固有的挑战,引入了非线性坐标变换来有效地消除积分的近奇异行为。所提出的方法具有几个优点,包括在管理瞬态项方面具有更大的灵活性,计算成本更低,并且对薄体问题具有更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SCT-BEM for Transient Heat Conduction and Wave Propagation in 2D Thin-Walled Structures

SCT-BEM for Transient Heat Conduction and Wave Propagation in 2D Thin-Walled Structures

Traditional boundary element method (BEM) faces significant challenges in addressing dynamic problems in thin-walled structures. These challenges arise primarily from the complexities of handling time-dependent terms and nearly singular integrals in structures with thin-shapes. In this study, we reformulate time derivative terms as domain integrals and approximate the unknown functions using radial basis functions (RBFs). This reformulation simplifies the treatment of transient terms and enhances computational efficiency by reducing the complexity of time-dependent formulations. The resulting domain integrals are efficiently evaluated using the scaled coordinate transformation BEM (SCT-BEM), which converts domain integrals into equivalent boundary integrals, thereby improving numerical accuracy and stability. Furthermore, to tackle the challenges inherent in thin-body structures, a nonlinear coordinate transformation is introduced to effectively remove the near-singular behavior of the integrals. The proposed method offers several advantages, including greater flexibility in managing transient terms, lower computational costs, and improved stability for thin-body problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信