封面图片,第五卷,第2期,2025年6月

IF 3.6 Q1 ENGINEERING, MECHANICAL
{"title":"封面图片,第五卷,第2期,2025年6月","authors":"","doi":"10.1002/msd2.70036","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics:</b> Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70036","citationCount":"0","resultStr":"{\"title\":\"Cover Image, Volume 5, Number 2, June 2025\",\"authors\":\"\",\"doi\":\"10.1002/msd2.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics:</b> Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

封面说明:基于逆运动学和动力学的机器学习代理的lambda机器人控制:由于逆运动学和动力学的复杂性,具有闭环机构的多体系统的跟踪控制提出了重大的计算挑战。本研究引入了一种创新的方法,通过在仿真数据上训练代理模型,用人工智能取代传统的基于模型的方法。以并联机构λ-机器人为例,对工作空间进行了分析,以保证训练数据的全面覆盖。经过训练的代理人提供控制输入,使使用线性二次调节器(LQR)进行轨迹跟踪。一个附加的反馈回路解决了模型的不确定性。仿真结果验证了这种人工智能增强的数据驱动控制框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cover Image, Volume 5, Number 2, June 2025

Cover Image, Volume 5, Number 2, June 2025

Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics: Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信