微填充床反应器中2-蒽醌加氢合成H2O2的工艺强化研究

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junjie Wang, Lin Sheng, Qichen Shang, Jian Deng and Guangsheng Luo
{"title":"微填充床反应器中2-蒽醌加氢合成H2O2的工艺强化研究","authors":"Junjie Wang, Lin Sheng, Qichen Shang, Jian Deng and Guangsheng Luo","doi":"10.1039/D5RE00079C","DOIUrl":null,"url":null,"abstract":"<p >In the synthesis of hydrogen peroxide, the hydrogenation reaction in the Riedl–Pfleiderer process faces operational risks and inefficiency challenges. This work pioneers the application of micro-packed-bed reactors (μPBRs) in 2-amylanthraquinone (AAQ) hydrogenation, establishing a transformative strategy for enhancing the Riedl–Pfleiderer process. By utilizing microscale effects, we achieved a record space–time yield of 336.8 g<small><sub>H<small><sub>2</sub></small>O<small><sub>2</sub></small></sub></small> g<small><sub>Pd</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> — 25× and 21× higher than those of conventional slurry reactors and trickle-bed reactors, respectively. For the first time, AAQ demonstrated superior performance over 2-ethylanthraquinone (EAQ) in μPBRs, addressing the critical challenge of balancing hydrogenation efficiency (10.13 g L<small><sup>−1</sup></small>) with 99.9% effective anthraquinone retention, which could not be achieved in prior systems. Additionally, systematic optimization of solvent composition (3 : 1 TMB/TOP), reaction parameters (50 °C, 300 kPa), and catalyst utilization revealed μPBRs' intrinsic advantages: ultra-short apparent residence time (9 s), minimized over-hydrogenation risk, and exceptional stability (99.1% effective anthraquinone retention after 10 cycles). Furthermore, a validated mass transfer model (prediction error &lt;20%) was established for understanding the intrinsic mechanisms within gas–liquid–solid interactions, offering a predictive tool for reactor design. This study provides a safety-enhanced paradigm for H<small><sub>2</sub></small>O<small><sub>2</sub></small> synthesis, overcoming long-standing limitations in industrial process intensification.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1473-1486"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process intensification of 2-amylanthraquinone hydrogenation in a micro-packed-bed reactor for H2O2 synthesis†\",\"authors\":\"Junjie Wang, Lin Sheng, Qichen Shang, Jian Deng and Guangsheng Luo\",\"doi\":\"10.1039/D5RE00079C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the synthesis of hydrogen peroxide, the hydrogenation reaction in the Riedl–Pfleiderer process faces operational risks and inefficiency challenges. This work pioneers the application of micro-packed-bed reactors (μPBRs) in 2-amylanthraquinone (AAQ) hydrogenation, establishing a transformative strategy for enhancing the Riedl–Pfleiderer process. By utilizing microscale effects, we achieved a record space–time yield of 336.8 g<small><sub>H<small><sub>2</sub></small>O<small><sub>2</sub></small></sub></small> g<small><sub>Pd</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> — 25× and 21× higher than those of conventional slurry reactors and trickle-bed reactors, respectively. For the first time, AAQ demonstrated superior performance over 2-ethylanthraquinone (EAQ) in μPBRs, addressing the critical challenge of balancing hydrogenation efficiency (10.13 g L<small><sup>−1</sup></small>) with 99.9% effective anthraquinone retention, which could not be achieved in prior systems. Additionally, systematic optimization of solvent composition (3 : 1 TMB/TOP), reaction parameters (50 °C, 300 kPa), and catalyst utilization revealed μPBRs' intrinsic advantages: ultra-short apparent residence time (9 s), minimized over-hydrogenation risk, and exceptional stability (99.1% effective anthraquinone retention after 10 cycles). Furthermore, a validated mass transfer model (prediction error &lt;20%) was established for understanding the intrinsic mechanisms within gas–liquid–solid interactions, offering a predictive tool for reactor design. This study provides a safety-enhanced paradigm for H<small><sub>2</sub></small>O<small><sub>2</sub></small> synthesis, overcoming long-standing limitations in industrial process intensification.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 7\",\"pages\":\" 1473-1486\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00079c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00079c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在双氧水合成过程中,Riedl-Pfleiderer工艺中的加氢反应面临着操作风险和低效率的挑战。这项工作开创了微填充床反应器(μPBRs)在2-蒽醌(AAQ)加氢中的应用,建立了一种改进Riedl-Pfleiderer工艺的变革策略。利用微尺度效应,我们获得了创纪录的时空产率336.8 gH2O2 gPd−1 h−1 -,分别比传统浆体反应器和滴床反应器高25倍和21倍。在μ pbr中,AAQ首次表现出优于2-乙基蒽醌(EAQ)的性能,解决了平衡氢化效率(10.13 g L−1)和99.9%有效蒽醌保留率的关键挑战,这在以前的体系中是无法实现的。此外,通过对溶剂组成(3∶1 TMB/TOP)、反应参数(50℃、300 kPa)和催化剂用量的系统优化,揭示了μ pbr的内在优势:超短的表观停留时间(9 s)、极低的过氢化风险、优异的稳定性(10个循环后有效保留蒽醌99.1%)。此外,建立了一个经过验证的传质模型(预测误差<;20%),用于理解气液固相互作用的内在机制,为反应器设计提供了预测工具。这项研究为H2O2合成提供了一个安全增强的范例,克服了工业过程强化长期存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Process intensification of 2-amylanthraquinone hydrogenation in a micro-packed-bed reactor for H2O2 synthesis†

Process intensification of 2-amylanthraquinone hydrogenation in a micro-packed-bed reactor for H2O2 synthesis†

In the synthesis of hydrogen peroxide, the hydrogenation reaction in the Riedl–Pfleiderer process faces operational risks and inefficiency challenges. This work pioneers the application of micro-packed-bed reactors (μPBRs) in 2-amylanthraquinone (AAQ) hydrogenation, establishing a transformative strategy for enhancing the Riedl–Pfleiderer process. By utilizing microscale effects, we achieved a record space–time yield of 336.8 gH2O2 gPd−1 h−1 — 25× and 21× higher than those of conventional slurry reactors and trickle-bed reactors, respectively. For the first time, AAQ demonstrated superior performance over 2-ethylanthraquinone (EAQ) in μPBRs, addressing the critical challenge of balancing hydrogenation efficiency (10.13 g L−1) with 99.9% effective anthraquinone retention, which could not be achieved in prior systems. Additionally, systematic optimization of solvent composition (3 : 1 TMB/TOP), reaction parameters (50 °C, 300 kPa), and catalyst utilization revealed μPBRs' intrinsic advantages: ultra-short apparent residence time (9 s), minimized over-hydrogenation risk, and exceptional stability (99.1% effective anthraquinone retention after 10 cycles). Furthermore, a validated mass transfer model (prediction error <20%) was established for understanding the intrinsic mechanisms within gas–liquid–solid interactions, offering a predictive tool for reactor design. This study provides a safety-enhanced paradigm for H2O2 synthesis, overcoming long-standing limitations in industrial process intensification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信