锌取代Ni1-xZnxFe2O4-rGO杂化尖晶石的缺陷工程白光发射

T. Jose Antony, K. Jagannathan
{"title":"锌取代Ni1-xZnxFe2O4-rGO杂化尖晶石的缺陷工程白光发射","authors":"T. Jose Antony,&nbsp;K. Jagannathan","doi":"10.1016/j.rsurfi.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>The Zn-substituted Nickel Ferrite-rGO (NiFe<sub>2</sub>O<sub>4</sub>–rGO) nanocomposites were prepared to investigate its intrinsic defect-mediated optical emission tuning without external dopants. Formation of spinel structure with lattice distortions due to cation redistribution was confirmed by P-XRD. Uniform nanoscale distribution on rGO sheets was ascertained by HRSEM. The UV–Vis diffuse reflectance analysis revealed non-linear bandgap modification with Zn content, consistent with strain-induced electronic structure modification. The PL spectra revealed broad visible emissions dominated by intrinsic defects, with Zn substitution systematically modifying intensity and recombination dynamics. The CIE chromaticity plots revealed near-white emission, particularly for intermediate Zn content. This research illustrates that precise Zn<sup>2+</sup> substitution itself allows for structural and photoluminescent behavior control, with a defect-engineered pathway to white-light emission. Ni<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>–rGO is a cost-effective, tunable optoelectronic material system.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"20 ","pages":"Article 100586"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-engineered white-light emission in Zn-substituted Ni1-xZnxFe2O4–rGO hybrid spinels\",\"authors\":\"T. Jose Antony,&nbsp;K. Jagannathan\",\"doi\":\"10.1016/j.rsurfi.2025.100586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Zn-substituted Nickel Ferrite-rGO (NiFe<sub>2</sub>O<sub>4</sub>–rGO) nanocomposites were prepared to investigate its intrinsic defect-mediated optical emission tuning without external dopants. Formation of spinel structure with lattice distortions due to cation redistribution was confirmed by P-XRD. Uniform nanoscale distribution on rGO sheets was ascertained by HRSEM. The UV–Vis diffuse reflectance analysis revealed non-linear bandgap modification with Zn content, consistent with strain-induced electronic structure modification. The PL spectra revealed broad visible emissions dominated by intrinsic defects, with Zn substitution systematically modifying intensity and recombination dynamics. The CIE chromaticity plots revealed near-white emission, particularly for intermediate Zn content. This research illustrates that precise Zn<sup>2+</sup> substitution itself allows for structural and photoluminescent behavior control, with a defect-engineered pathway to white-light emission. Ni<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>–rGO is a cost-effective, tunable optoelectronic material system.</div></div>\",\"PeriodicalId\":21085,\"journal\":{\"name\":\"Results in Surfaces and Interfaces\",\"volume\":\"20 \",\"pages\":\"Article 100586\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Surfaces and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666845925001734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925001734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制备了锌取代铁酸镍-还原氧化石墨烯(nife2o4 -还原氧化石墨烯)纳米复合材料,研究了其在无外源掺杂情况下的本质缺陷介导的光发射调谐。P-XRD证实了阳离子重分布导致尖晶石结构的晶格畸变。利用HRSEM确定了氧化石墨烯薄片的纳米尺度均匀分布。紫外-可见漫反射分析显示带隙随Zn含量的变化呈非线性变化,与应变诱导的电子结构变化一致。PL光谱显示了以本征缺陷为主的宽可见发射,锌取代系统地改变了强度和复合动力学。CIE色度图显示近白色发光,特别是对于中等锌含量。该研究表明,精确的Zn2+取代本身允许结构和光致发光行为控制,具有缺陷工程的白光发射途径。Ni1-xZnxFe2O4-rGO是一种具有成本效益的可调谐光电材料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect-engineered white-light emission in Zn-substituted Ni1-xZnxFe2O4–rGO hybrid spinels
The Zn-substituted Nickel Ferrite-rGO (NiFe2O4–rGO) nanocomposites were prepared to investigate its intrinsic defect-mediated optical emission tuning without external dopants. Formation of spinel structure with lattice distortions due to cation redistribution was confirmed by P-XRD. Uniform nanoscale distribution on rGO sheets was ascertained by HRSEM. The UV–Vis diffuse reflectance analysis revealed non-linear bandgap modification with Zn content, consistent with strain-induced electronic structure modification. The PL spectra revealed broad visible emissions dominated by intrinsic defects, with Zn substitution systematically modifying intensity and recombination dynamics. The CIE chromaticity plots revealed near-white emission, particularly for intermediate Zn content. This research illustrates that precise Zn2+ substitution itself allows for structural and photoluminescent behavior control, with a defect-engineered pathway to white-light emission. Ni1-xZnxFe2O4–rGO is a cost-effective, tunable optoelectronic material system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信