{"title":"洛伦兹空间中黎曼空间的c1等距嵌入","authors":"Alaa Boukholkhal","doi":"10.1016/j.difgeo.2025.102266","DOIUrl":null,"url":null,"abstract":"<div><div>For any compact Riemannian manifold <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and any Lorentzian manifold <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, we prove that any spacelike embedding <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mi>W</mi></math></span> that is long (<span><math><mi>g</mi><mo>≤</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>h</mi></math></span>) can be <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-approximated by a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> isometric embedding <span><math><mi>F</mi><mo>:</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>→</mo><mo>(</mo><mi>W</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102266"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C1-isometric embeddings of Riemannian spaces in Lorentzian spaces\",\"authors\":\"Alaa Boukholkhal\",\"doi\":\"10.1016/j.difgeo.2025.102266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any compact Riemannian manifold <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> and any Lorentzian manifold <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>, we prove that any spacelike embedding <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mi>W</mi></math></span> that is long (<span><math><mi>g</mi><mo>≤</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>h</mi></math></span>) can be <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-approximated by a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> isometric embedding <span><math><mi>F</mi><mo>:</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>→</mo><mo>(</mo><mi>W</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102266\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000415\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
C1-isometric embeddings of Riemannian spaces in Lorentzian spaces
For any compact Riemannian manifold and any Lorentzian manifold , we prove that any spacelike embedding that is long () can be -approximated by a isometric embedding .
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.