Duo Jin, Shanrui Wang, Wangqiong Chen, Jing Fang, Jie Rang, Liqiu Xia, zirong zhu
{"title":"cspA基因对糖多孢子虫生长发育及丁烯基旋糖素合成的影响","authors":"Duo Jin, Shanrui Wang, Wangqiong Chen, Jing Fang, Jie Rang, Liqiu Xia, zirong zhu","doi":"10.1016/j.enzmictec.2025.110701","DOIUrl":null,"url":null,"abstract":"<div><div>Cold shock proteins (CSPs) represent a universal class of proteins in microorganisms, rapidly inducible under low temperature conditions. As molecular chaperones for RNA, they bind to single-stranded nucleotides, preventing the formation of complex secondary structures. This facilitates efficient translation and gene expression regulation. This investigation pioneers the study of the <em>cspA</em> gene through metabolic engineering techniques, to uncover its critical biological roles in the growth and development of <em>Saccharopolyspora pogona</em> and in butenyl-spinosyn biosynthesis. Employing comparative proteomic and targeted metabolomic analyses, this research elucidates the metabolic pathway alterations prompted by the augmented presence of the cold shock protein CspA. Additionally, it offers initial insights into the regulatory mechanisms by which CspA affects <em>S. pogona</em>'s growth, development, and butenyl-spinosyn production. The outcomes of this study significantly advance our theoretical understanding of the rational optimization of butenyl-spinosyn biosynthetic pathways. They also provide valuable guidance for other actinobacteria aiming to boost their resilience to harsh environments by overexpressing the <em>cspA</em> gene.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"190 ","pages":"Article 110701"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of the cspA gene on growth development and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona\",\"authors\":\"Duo Jin, Shanrui Wang, Wangqiong Chen, Jing Fang, Jie Rang, Liqiu Xia, zirong zhu\",\"doi\":\"10.1016/j.enzmictec.2025.110701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cold shock proteins (CSPs) represent a universal class of proteins in microorganisms, rapidly inducible under low temperature conditions. As molecular chaperones for RNA, they bind to single-stranded nucleotides, preventing the formation of complex secondary structures. This facilitates efficient translation and gene expression regulation. This investigation pioneers the study of the <em>cspA</em> gene through metabolic engineering techniques, to uncover its critical biological roles in the growth and development of <em>Saccharopolyspora pogona</em> and in butenyl-spinosyn biosynthesis. Employing comparative proteomic and targeted metabolomic analyses, this research elucidates the metabolic pathway alterations prompted by the augmented presence of the cold shock protein CspA. Additionally, it offers initial insights into the regulatory mechanisms by which CspA affects <em>S. pogona</em>'s growth, development, and butenyl-spinosyn production. The outcomes of this study significantly advance our theoretical understanding of the rational optimization of butenyl-spinosyn biosynthetic pathways. They also provide valuable guidance for other actinobacteria aiming to boost their resilience to harsh environments by overexpressing the <em>cspA</em> gene.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"190 \",\"pages\":\"Article 110701\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925001218\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001218","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The effect of the cspA gene on growth development and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona
Cold shock proteins (CSPs) represent a universal class of proteins in microorganisms, rapidly inducible under low temperature conditions. As molecular chaperones for RNA, they bind to single-stranded nucleotides, preventing the formation of complex secondary structures. This facilitates efficient translation and gene expression regulation. This investigation pioneers the study of the cspA gene through metabolic engineering techniques, to uncover its critical biological roles in the growth and development of Saccharopolyspora pogona and in butenyl-spinosyn biosynthesis. Employing comparative proteomic and targeted metabolomic analyses, this research elucidates the metabolic pathway alterations prompted by the augmented presence of the cold shock protein CspA. Additionally, it offers initial insights into the regulatory mechanisms by which CspA affects S. pogona's growth, development, and butenyl-spinosyn production. The outcomes of this study significantly advance our theoretical understanding of the rational optimization of butenyl-spinosyn biosynthetic pathways. They also provide valuable guidance for other actinobacteria aiming to boost their resilience to harsh environments by overexpressing the cspA gene.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.