有向高阶网络的规定时间二部同步

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Linlong Xu, Xiwei Liu
{"title":"有向高阶网络的规定时间二部同步","authors":"Linlong Xu,&nbsp;Xiwei Liu","doi":"10.1016/j.chaos.2025.116733","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the prescribed-time complete and bipartite synchronization problems for directed higher-order networks (DHNs). At first, a hypergraph is employed to describe the network’s topological structure, where each hyperedge connects multiple nodes. Different from many existing studies, we introduce generalized coupling matrices and a weighted coupling function, where the elements of the coupling matrices can take positive or negative values, and the nodes in the coupling function are weighted differently. To address synchronization and control problems in DHNs, we then apply the rearranging variables’ order technique to link DHNs and multiweighted networks. Next, a time-varying regulatory function is introduced, and the coupling matrices are combined from a dimensional perspective to derive the prescribed-time bipartite synchronization criteria. Finally, some numerical simulations are provided.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116733"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed-time bipartite synchronization for directed higher-order networks\",\"authors\":\"Linlong Xu,&nbsp;Xiwei Liu\",\"doi\":\"10.1016/j.chaos.2025.116733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the prescribed-time complete and bipartite synchronization problems for directed higher-order networks (DHNs). At first, a hypergraph is employed to describe the network’s topological structure, where each hyperedge connects multiple nodes. Different from many existing studies, we introduce generalized coupling matrices and a weighted coupling function, where the elements of the coupling matrices can take positive or negative values, and the nodes in the coupling function are weighted differently. To address synchronization and control problems in DHNs, we then apply the rearranging variables’ order technique to link DHNs and multiweighted networks. Next, a time-varying regulatory function is introduced, and the coupling matrices are combined from a dimensional perspective to derive the prescribed-time bipartite synchronization criteria. Finally, some numerical simulations are provided.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116733\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007465\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007465","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了有向高阶网络(dhn)的规定时间完备和二部同步问题。首先,使用超图来描述网络的拓扑结构,其中每个超边缘连接多个节点。与现有的许多研究不同,我们引入了广义耦合矩阵和加权耦合函数,其中耦合矩阵的元素可以取正值或负值,并且耦合函数中的节点的权重不同。为了解决dhn中的同步和控制问题,我们将变量的顺序重排技术应用于dhn和多加权网络之间的连接。其次,引入时变调节函数,从量纲角度对耦合矩阵进行组合,推导出规定时间的二部同步准则。最后进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed-time bipartite synchronization for directed higher-order networks
We investigate the prescribed-time complete and bipartite synchronization problems for directed higher-order networks (DHNs). At first, a hypergraph is employed to describe the network’s topological structure, where each hyperedge connects multiple nodes. Different from many existing studies, we introduce generalized coupling matrices and a weighted coupling function, where the elements of the coupling matrices can take positive or negative values, and the nodes in the coupling function are weighted differently. To address synchronization and control problems in DHNs, we then apply the rearranging variables’ order technique to link DHNs and multiweighted networks. Next, a time-varying regulatory function is introduced, and the coupling matrices are combined from a dimensional perspective to derive the prescribed-time bipartite synchronization criteria. Finally, some numerical simulations are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信