{"title":"光子球、引力透镜/镜像和具有幻影全局单极子的变形ads -史瓦西黑洞中的灰体辐射","authors":"Faizuddin Ahmed , Ahmad Al-Badawi , İzzet Sakallı","doi":"10.1016/j.dark.2025.101988","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the geodesic structure, gravitational lensing/mirroring phenomena, and scalar perturbations of deformed AdS-Schwarzschild black holes with global monopoles, incorporating both ordinary and phantom configurations. We introduce a modified black hole metric characterized by a deformation parameter <span><math><mi>α</mi></math></span>, a control parameter <span><math><mi>β</mi></math></span>, and a symmetry-breaking scale parameter <span><math><mi>η</mi></math></span>, which collectively influence the spacetime geometry. Through comprehensive geodesic analysis, we determine the photon sphere radius numerically for various parameter configurations, revealing significant differences between ordinary and phantom global monopoles. The stability of timelike circular orbits is assessed via the Lyapunov exponent, demonstrating how these parameters affect orbital dynamics. Our gravitational lensing analysis, employing the Gauss–Bonnet theorem, reveals a remarkable gravitational mirroring effect in phantom monopole spacetimes at high AdS curvature radii, where light rays experience negative deflection angles-being repelled rather than attracted by the gravitational field. Furthermore, we analyze massless scalar perturbations and derive the corresponding greybody factors, which characterize the transmission of Hawking radiation through the effective potential barrier surrounding the black hole. Our numerical results indicate that phantom global monopoles substantially modify both gravitational lensing/mirroring properties and the radiation spectrum compared to ordinary monopoles. The presence of the deformation parameter <span><math><mi>α</mi></math></span> introduces additional complexity to the system, leading to distinct thermodynamic behavior that deviates significantly from the standard AdS-Schwarzschild solution.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"49 ","pages":"Article 101988"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon spheres, gravitational lensing/mirroring, and greybody radiation in deformed AdS-Schwarzschild black holes with phantom global monopole\",\"authors\":\"Faizuddin Ahmed , Ahmad Al-Badawi , İzzet Sakallı\",\"doi\":\"10.1016/j.dark.2025.101988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the geodesic structure, gravitational lensing/mirroring phenomena, and scalar perturbations of deformed AdS-Schwarzschild black holes with global monopoles, incorporating both ordinary and phantom configurations. We introduce a modified black hole metric characterized by a deformation parameter <span><math><mi>α</mi></math></span>, a control parameter <span><math><mi>β</mi></math></span>, and a symmetry-breaking scale parameter <span><math><mi>η</mi></math></span>, which collectively influence the spacetime geometry. Through comprehensive geodesic analysis, we determine the photon sphere radius numerically for various parameter configurations, revealing significant differences between ordinary and phantom global monopoles. The stability of timelike circular orbits is assessed via the Lyapunov exponent, demonstrating how these parameters affect orbital dynamics. Our gravitational lensing analysis, employing the Gauss–Bonnet theorem, reveals a remarkable gravitational mirroring effect in phantom monopole spacetimes at high AdS curvature radii, where light rays experience negative deflection angles-being repelled rather than attracted by the gravitational field. Furthermore, we analyze massless scalar perturbations and derive the corresponding greybody factors, which characterize the transmission of Hawking radiation through the effective potential barrier surrounding the black hole. Our numerical results indicate that phantom global monopoles substantially modify both gravitational lensing/mirroring properties and the radiation spectrum compared to ordinary monopoles. The presence of the deformation parameter <span><math><mi>α</mi></math></span> introduces additional complexity to the system, leading to distinct thermodynamic behavior that deviates significantly from the standard AdS-Schwarzschild solution.</div></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"49 \",\"pages\":\"Article 101988\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686425001815\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425001815","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Photon spheres, gravitational lensing/mirroring, and greybody radiation in deformed AdS-Schwarzschild black holes with phantom global monopole
In this study, we investigate the geodesic structure, gravitational lensing/mirroring phenomena, and scalar perturbations of deformed AdS-Schwarzschild black holes with global monopoles, incorporating both ordinary and phantom configurations. We introduce a modified black hole metric characterized by a deformation parameter , a control parameter , and a symmetry-breaking scale parameter , which collectively influence the spacetime geometry. Through comprehensive geodesic analysis, we determine the photon sphere radius numerically for various parameter configurations, revealing significant differences between ordinary and phantom global monopoles. The stability of timelike circular orbits is assessed via the Lyapunov exponent, demonstrating how these parameters affect orbital dynamics. Our gravitational lensing analysis, employing the Gauss–Bonnet theorem, reveals a remarkable gravitational mirroring effect in phantom monopole spacetimes at high AdS curvature radii, where light rays experience negative deflection angles-being repelled rather than attracted by the gravitational field. Furthermore, we analyze massless scalar perturbations and derive the corresponding greybody factors, which characterize the transmission of Hawking radiation through the effective potential barrier surrounding the black hole. Our numerical results indicate that phantom global monopoles substantially modify both gravitational lensing/mirroring properties and the radiation spectrum compared to ordinary monopoles. The presence of the deformation parameter introduces additional complexity to the system, leading to distinct thermodynamic behavior that deviates significantly from the standard AdS-Schwarzschild solution.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.