基于深度学习和证据理论的EEG-fNIRS信号集成运动图像分类

Mohammed E. Seno , Niladri Maiti , Maulik Patel , Mihirkumar M. Patel , Kalpesh B. Chaudhary , Ashish Pasaya , Babacar Toure
{"title":"基于深度学习和证据理论的EEG-fNIRS信号集成运动图像分类","authors":"Mohammed E. Seno ,&nbsp;Niladri Maiti ,&nbsp;Maulik Patel ,&nbsp;Mihirkumar M. Patel ,&nbsp;Kalpesh B. Chaudhary ,&nbsp;Ashish Pasaya ,&nbsp;Babacar Toure","doi":"10.1016/j.neuri.2025.100214","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of traditional unimodal brain-computer interface BCI) technologies based on electroencephalography (EEG) such as low spatial resolution and high susceptibility to noise an increasing number of neuroscience-driven studies have begun to focus on BCI systems that fuse EEG signals with functional near-infrared spectroscopy (fNIRS) signals. However, integrating these two heterogeneous neurophysiological signals presents significant challenges. In this work, we propose an innovative end-to-end signal fusion method based on deep learning and evidence theory for motor imagery (MI) classification within the neuroscience domain. For EEG signals, spatiotemporal features are extracted using dual-scale temporal convolution and depthwise separable convolution, and a hybrid attention module is introduced to enhance the network's sensitivity to salient neural patterns. For fNIRS signals, spatial convolution across all channels is employed to explore activation differences among brain regions, and parallel temporal convolution combined with a gated recurrent unit (GRU) captures richer temporal dynamics of the hemodynamic response. At the decision fusion stage, decision outputs from both modalities are first quantified using Dirichlet distribution parameter estimation to model uncertainty, followed by a two-layer reasoning process using Dempster-Shafer Theory (DST) to fuse evidence from basic belief assignment (BBA) methods and both modalities. Experimental evaluation on the publicly available TU-Berlin-A dataset demonstrates the effectiveness of the proposed model, achieving an average accuracy of 83.26%, representing a 3.78% improvement over state-of-the-art methods. These results provide new insights and methodologies for neuroscience-inspired multimodal BCI systems integrating EEG and fNIRS signals.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 3","pages":"Article 100214"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG–fNIRS signal integration for motor imagery classification using deep learning and evidence theory\",\"authors\":\"Mohammed E. Seno ,&nbsp;Niladri Maiti ,&nbsp;Maulik Patel ,&nbsp;Mihirkumar M. Patel ,&nbsp;Kalpesh B. Chaudhary ,&nbsp;Ashish Pasaya ,&nbsp;Babacar Toure\",\"doi\":\"10.1016/j.neuri.2025.100214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the limitations of traditional unimodal brain-computer interface BCI) technologies based on electroencephalography (EEG) such as low spatial resolution and high susceptibility to noise an increasing number of neuroscience-driven studies have begun to focus on BCI systems that fuse EEG signals with functional near-infrared spectroscopy (fNIRS) signals. However, integrating these two heterogeneous neurophysiological signals presents significant challenges. In this work, we propose an innovative end-to-end signal fusion method based on deep learning and evidence theory for motor imagery (MI) classification within the neuroscience domain. For EEG signals, spatiotemporal features are extracted using dual-scale temporal convolution and depthwise separable convolution, and a hybrid attention module is introduced to enhance the network's sensitivity to salient neural patterns. For fNIRS signals, spatial convolution across all channels is employed to explore activation differences among brain regions, and parallel temporal convolution combined with a gated recurrent unit (GRU) captures richer temporal dynamics of the hemodynamic response. At the decision fusion stage, decision outputs from both modalities are first quantified using Dirichlet distribution parameter estimation to model uncertainty, followed by a two-layer reasoning process using Dempster-Shafer Theory (DST) to fuse evidence from basic belief assignment (BBA) methods and both modalities. Experimental evaluation on the publicly available TU-Berlin-A dataset demonstrates the effectiveness of the proposed model, achieving an average accuracy of 83.26%, representing a 3.78% improvement over state-of-the-art methods. These results provide new insights and methodologies for neuroscience-inspired multimodal BCI systems integrating EEG and fNIRS signals.</div></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"5 3\",\"pages\":\"Article 100214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528625000299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决传统的基于脑电图(EEG)的单峰脑机接口(BCI)技术的局限性,如低空间分辨率和高噪声敏感性,越来越多的神经科学驱动的研究开始关注将EEG信号与功能近红外光谱(fNIRS)信号融合在一起的BCI系统。然而,整合这两种异质的神经生理信号提出了重大挑战。在这项工作中,我们提出了一种基于深度学习和证据理论的创新端到端信号融合方法,用于神经科学领域的运动图像(MI)分类。对于脑电信号,采用双尺度时间卷积和深度可分卷积提取时空特征,并引入混合注意模块增强网络对显著神经模式的敏感性。对于fNIRS信号,采用跨所有通道的空间卷积来探索脑区域之间的激活差异,并行时间卷积结合门控循环单元(GRU)捕获更丰富的血流动力学响应的时间动态。在决策融合阶段,首先使用Dirichlet分布参数估计对两种模式的决策输出进行量化以建模不确定性,然后使用Dempster-Shafer理论(DST)进行两层推理过程,以融合来自基本信念分配(BBA)方法和两种模式的证据。在公开可用的TU-Berlin-A数据集上的实验评估证明了所提出模型的有效性,平均准确率为83.26%,比最先进的方法提高了3.78%。这些结果为神经科学启发的多模态BCI系统集成EEG和fNIRS信号提供了新的见解和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG–fNIRS signal integration for motor imagery classification using deep learning and evidence theory
To address the limitations of traditional unimodal brain-computer interface BCI) technologies based on electroencephalography (EEG) such as low spatial resolution and high susceptibility to noise an increasing number of neuroscience-driven studies have begun to focus on BCI systems that fuse EEG signals with functional near-infrared spectroscopy (fNIRS) signals. However, integrating these two heterogeneous neurophysiological signals presents significant challenges. In this work, we propose an innovative end-to-end signal fusion method based on deep learning and evidence theory for motor imagery (MI) classification within the neuroscience domain. For EEG signals, spatiotemporal features are extracted using dual-scale temporal convolution and depthwise separable convolution, and a hybrid attention module is introduced to enhance the network's sensitivity to salient neural patterns. For fNIRS signals, spatial convolution across all channels is employed to explore activation differences among brain regions, and parallel temporal convolution combined with a gated recurrent unit (GRU) captures richer temporal dynamics of the hemodynamic response. At the decision fusion stage, decision outputs from both modalities are first quantified using Dirichlet distribution parameter estimation to model uncertainty, followed by a two-layer reasoning process using Dempster-Shafer Theory (DST) to fuse evidence from basic belief assignment (BBA) methods and both modalities. Experimental evaluation on the publicly available TU-Berlin-A dataset demonstrates the effectiveness of the proposed model, achieving an average accuracy of 83.26%, representing a 3.78% improvement over state-of-the-art methods. These results provide new insights and methodologies for neuroscience-inspired multimodal BCI systems integrating EEG and fNIRS signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信