不确定非线性奇异系统的保证有限时间H∞稳定性:一种动态输出反馈方法

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Meiqing Li , Jason Gu , Umar Farooq
{"title":"不确定非线性奇异系统的保证有限时间H∞稳定性:一种动态输出反馈方法","authors":"Meiqing Li ,&nbsp;Jason Gu ,&nbsp;Umar Farooq","doi":"10.1016/j.jfranklin.2025.107781","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the finite-time dynamic output feedback (DOF) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control issue for nonlinear singular systems exposed to external perturbations and uncertainty. The primary objective is to utilize the designed technique of a DOF controller to achieve the state’s finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> stabilization for the nonlinear uncertain singular system in a prescribed interval. Firstly, by utilizing the augmented matrix method and Lyapunov function analysis, the developed results can achieve singular finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> stability for the closed-loop system along with the proposed DOF <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control strategy. Then, through utilizing the matrix inequality decoupling principle, the determination of the DOF control parameters is derived to adjust the states of the system. Finally, the applicability and reliability of the obtained controller are adequately substantiated by some examples.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 12","pages":"Article 107781"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guaranteed finite-time H∞ stability for uncertain nonlinear singular systems: A dynamic output feedback approach\",\"authors\":\"Meiqing Li ,&nbsp;Jason Gu ,&nbsp;Umar Farooq\",\"doi\":\"10.1016/j.jfranklin.2025.107781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the finite-time dynamic output feedback (DOF) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control issue for nonlinear singular systems exposed to external perturbations and uncertainty. The primary objective is to utilize the designed technique of a DOF controller to achieve the state’s finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> stabilization for the nonlinear uncertain singular system in a prescribed interval. Firstly, by utilizing the augmented matrix method and Lyapunov function analysis, the developed results can achieve singular finite-time <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> stability for the closed-loop system along with the proposed DOF <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> control strategy. Then, through utilizing the matrix inequality decoupling principle, the determination of the DOF control parameters is derived to adjust the states of the system. Finally, the applicability and reliability of the obtained controller are adequately substantiated by some examples.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 12\",\"pages\":\"Article 107781\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225002741\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225002741","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了受外部扰动和不确定性影响的非线性奇异系统的有限时间动态输出反馈(DOF) H∞控制问题。主要目标是利用所设计的自由度控制器技术实现非线性不确定奇异系统在规定区间内的有限时间H∞状态镇定。首先,利用增广矩阵法和Lyapunov函数分析,结合所提出的自由度H∞控制策略,使闭环系统具有有限时间的奇异H∞稳定性。然后,利用矩阵不等式解耦原理,推导出自由度控制参数的确定方法,对系统状态进行调整。最后,通过算例验证了所得到的控制器的适用性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guaranteed finite-time H∞ stability for uncertain nonlinear singular systems: A dynamic output feedback approach
This paper explores the finite-time dynamic output feedback (DOF) H control issue for nonlinear singular systems exposed to external perturbations and uncertainty. The primary objective is to utilize the designed technique of a DOF controller to achieve the state’s finite-time H stabilization for the nonlinear uncertain singular system in a prescribed interval. Firstly, by utilizing the augmented matrix method and Lyapunov function analysis, the developed results can achieve singular finite-time H stability for the closed-loop system along with the proposed DOF H control strategy. Then, through utilizing the matrix inequality decoupling principle, the determination of the DOF control parameters is derived to adjust the states of the system. Finally, the applicability and reliability of the obtained controller are adequately substantiated by some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信