有限变形下挠性电的C0内罚有限元法

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Sergi Pérez-Escudero, Sonia Fernández-Méndez
{"title":"有限变形下挠性电的C0内罚有限元法","authors":"Sergi Pérez-Escudero,&nbsp;Sonia Fernández-Méndez","doi":"10.1016/j.cma.2025.118133","DOIUrl":null,"url":null,"abstract":"<div><div>The 4th-order partial differential equations modeling the flexoelectric effect at finite deformations are considered, accounting for direct and converse effects. Its numerical solution, using standard <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Finite Elements, is carried out through the development of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Interior Penalty method (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-IPM) with a Newton–Raphson nonlinear solver. The simulation of metamaterials by means of generalized periodicity conditions is also addressed within the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-IPM framework. The order of convergence of the method is assessed in a synthetic test, studying the effect of the penalty parameters in the accuracy of the scheme. The method is also applied to the solution of a cantilever beam problem, and to the simulation of metamaterials at large deformations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118133"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A C0 Interior Penalty Finite Element method for flexoelectricity at finite deformations\",\"authors\":\"Sergi Pérez-Escudero,&nbsp;Sonia Fernández-Méndez\",\"doi\":\"10.1016/j.cma.2025.118133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 4th-order partial differential equations modeling the flexoelectric effect at finite deformations are considered, accounting for direct and converse effects. Its numerical solution, using standard <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Finite Elements, is carried out through the development of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> Interior Penalty method (<span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-IPM) with a Newton–Raphson nonlinear solver. The simulation of metamaterials by means of generalized periodicity conditions is also addressed within the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>-IPM framework. The order of convergence of the method is assessed in a synthetic test, studying the effect of the penalty parameters in the accuracy of the scheme. The method is also applied to the solution of a cantilever beam problem, and to the simulation of metamaterials at large deformations.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"444 \",\"pages\":\"Article 118133\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525004050\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525004050","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑了有限变形下挠曲电效应的四阶偏微分方程,考虑了正效应和逆效应。它的数值解,使用标准的C0有限元,通过发展C0内罚法(C0- ipm)与牛顿-拉夫森非线性求解器进行。在C0-IPM框架下,利用广义周期性条件对超材料进行了模拟。在综合测试中评估了该方法的收敛阶,研究了惩罚参数对方案精度的影响。该方法也适用于悬臂梁问题的求解和超材料大变形的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C0 Interior Penalty Finite Element method for flexoelectricity at finite deformations
The 4th-order partial differential equations modeling the flexoelectric effect at finite deformations are considered, accounting for direct and converse effects. Its numerical solution, using standard C0 Finite Elements, is carried out through the development of a C0 Interior Penalty method (C0-IPM) with a Newton–Raphson nonlinear solver. The simulation of metamaterials by means of generalized periodicity conditions is also addressed within the C0-IPM framework. The order of convergence of the method is assessed in a synthetic test, studying the effect of the penalty parameters in the accuracy of the scheme. The method is also applied to the solution of a cantilever beam problem, and to the simulation of metamaterials at large deformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信