Jiangzhou Wang , Binghui Liu , Bing-Yi Jing , Jianhua Guo
{"title":"了解渐近一致性及其在大样本统计推断中的独特优势","authors":"Jiangzhou Wang , Binghui Liu , Bing-Yi Jing , Jianhua Guo","doi":"10.1016/j.jmva.2025.105462","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this paper is to investigate the usefulness of asymptotic consistency in large-sample statistical inference. In many statistical applications, plug-in methods are used to construct statistics, which raises the natural question of whether the asymptotic properties of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> remain unchanged when the estimator <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is replaced by its corresponding target quantity <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We establish that if <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is asymptotically consistent for <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, meaning that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>P</mi><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> share identical asymptotic behaviors in terms of convergence and limiting distribution. This result notably simplifies the derivation of asymptotic properties, especially when the dependency between <span><math><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is complex. Furthermore, we systematically explore the relationship between asymptotic consistency and traditional forms of consistency, such as weak and strong consistency, clarifying their distinctions through theorems and counterexamples. Finally, the theoretical findings are demonstrated via three specific applications, illustrating the practical benefits of asymptotic consistency in large-sample inference.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105462"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding asymptotic consistency and its unique advantages in large sample statistical inference\",\"authors\":\"Jiangzhou Wang , Binghui Liu , Bing-Yi Jing , Jianhua Guo\",\"doi\":\"10.1016/j.jmva.2025.105462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main objective of this paper is to investigate the usefulness of asymptotic consistency in large-sample statistical inference. In many statistical applications, plug-in methods are used to construct statistics, which raises the natural question of whether the asymptotic properties of <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> remain unchanged when the estimator <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is replaced by its corresponding target quantity <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We establish that if <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is asymptotically consistent for <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, meaning that <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>P</mi><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> share identical asymptotic behaviors in terms of convergence and limiting distribution. This result notably simplifies the derivation of asymptotic properties, especially when the dependency between <span><math><msub><mrow><mover><mrow><mi>β</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is complex. Furthermore, we systematically explore the relationship between asymptotic consistency and traditional forms of consistency, such as weak and strong consistency, clarifying their distinctions through theorems and counterexamples. Finally, the theoretical findings are demonstrated via three specific applications, illustrating the practical benefits of asymptotic consistency in large-sample inference.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105462\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000570\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000570","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Understanding asymptotic consistency and its unique advantages in large sample statistical inference
The main objective of this paper is to investigate the usefulness of asymptotic consistency in large-sample statistical inference. In many statistical applications, plug-in methods are used to construct statistics, which raises the natural question of whether the asymptotic properties of remain unchanged when the estimator is replaced by its corresponding target quantity . We establish that if is asymptotically consistent for , meaning that , then and share identical asymptotic behaviors in terms of convergence and limiting distribution. This result notably simplifies the derivation of asymptotic properties, especially when the dependency between and is complex. Furthermore, we systematically explore the relationship between asymptotic consistency and traditional forms of consistency, such as weak and strong consistency, clarifying their distinctions through theorems and counterexamples. Finally, the theoretical findings are demonstrated via three specific applications, illustrating the practical benefits of asymptotic consistency in large-sample inference.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.