基于llm语义嵌入和FAISS相似度搜索的推荐系统

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Seema Safar , Babita Roslind Jose , Jimson Mathew , T. Santhanakrishnan
{"title":"基于llm语义嵌入和FAISS相似度搜索的推荐系统","authors":"Seema Safar ,&nbsp;Babita Roslind Jose ,&nbsp;Jimson Mathew ,&nbsp;T. Santhanakrishnan","doi":"10.1016/j.neucom.2025.130753","DOIUrl":null,"url":null,"abstract":"<div><div>Content-based recommendation systems have gained significant attention for their ability to provide personalized suggestions by analyzing item descriptions. Leveraging the power of large language models (LLMs), this research introduces a novel recommendation approach that generates high-quality semantic embeddings to facilitate efficient similarity-based retrieval for Top-N recommendations. The proposed method capitalizes on the deep contextual understanding of LLMs to capture intricate semantic relationships within item content, thereby enhancing recommendation relevance. Furthermore, the system integrates FAISS (Facebook AI Similarity Search) to optimize similarity search, enabling faster and more scalable retrieval of relevant recommendations. To evaluate its effectiveness, the system is tested on four diverse real-world datasets: Yelp, Amazon Beauty, MovieLens, and LastFM, covering multiple domains. Performance is assessed using widely adopted evaluation metrics, including Normalized Discounted Cumulative Gain (NDCG), Precision, Recall, Hit Rate (HR), F1-Score and business-relevant evaluation measures. Extensive experimental results demonstrate that the proposed method, augmented with FAISS, consistently outperforms the existing state-of-the-art recommendation techniques. The code supporting this code is publicly available at: <span><span>https://github.com/seemasafar/Reco-System-Using-LLM</span><svg><path></path></svg></span></div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130753"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommendation systems with LLM-based semantic embeddings and FAISS similarity search\",\"authors\":\"Seema Safar ,&nbsp;Babita Roslind Jose ,&nbsp;Jimson Mathew ,&nbsp;T. Santhanakrishnan\",\"doi\":\"10.1016/j.neucom.2025.130753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Content-based recommendation systems have gained significant attention for their ability to provide personalized suggestions by analyzing item descriptions. Leveraging the power of large language models (LLMs), this research introduces a novel recommendation approach that generates high-quality semantic embeddings to facilitate efficient similarity-based retrieval for Top-N recommendations. The proposed method capitalizes on the deep contextual understanding of LLMs to capture intricate semantic relationships within item content, thereby enhancing recommendation relevance. Furthermore, the system integrates FAISS (Facebook AI Similarity Search) to optimize similarity search, enabling faster and more scalable retrieval of relevant recommendations. To evaluate its effectiveness, the system is tested on four diverse real-world datasets: Yelp, Amazon Beauty, MovieLens, and LastFM, covering multiple domains. Performance is assessed using widely adopted evaluation metrics, including Normalized Discounted Cumulative Gain (NDCG), Precision, Recall, Hit Rate (HR), F1-Score and business-relevant evaluation measures. Extensive experimental results demonstrate that the proposed method, augmented with FAISS, consistently outperforms the existing state-of-the-art recommendation techniques. The code supporting this code is publicly available at: <span><span>https://github.com/seemasafar/Reco-System-Using-LLM</span><svg><path></path></svg></span></div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"649 \",\"pages\":\"Article 130753\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225014250\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014250","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于内容的推荐系统因其通过分析项目描述提供个性化建议的能力而获得了极大的关注。利用大型语言模型(llm)的力量,本研究引入了一种新的推荐方法,该方法生成高质量的语义嵌入,以促进基于相似度的Top-N推荐的高效检索。所提出的方法利用llm的深度上下文理解来捕获项目内容中复杂的语义关系,从而增强推荐相关性。此外,该系统还集成了FAISS (Facebook AI相似度搜索)来优化相似度搜索,从而实现更快、更可扩展的相关推荐检索。为了评估其有效性,该系统在四个不同的现实世界数据集上进行了测试:Yelp、Amazon Beauty、MovieLens和LastFM,涵盖多个领域。性能评估使用广泛采用的评估指标,包括归一化贴现累积增益(NDCG),精度,召回率,命中率(HR), F1-Score和业务相关的评估措施。大量的实验结果表明,该方法与FAISS相结合,始终优于现有的最先进的推荐技术。支持此代码的代码可在:https://github.com/seemasafar/Reco-System-Using-LLM上公开获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendation systems with LLM-based semantic embeddings and FAISS similarity search
Content-based recommendation systems have gained significant attention for their ability to provide personalized suggestions by analyzing item descriptions. Leveraging the power of large language models (LLMs), this research introduces a novel recommendation approach that generates high-quality semantic embeddings to facilitate efficient similarity-based retrieval for Top-N recommendations. The proposed method capitalizes on the deep contextual understanding of LLMs to capture intricate semantic relationships within item content, thereby enhancing recommendation relevance. Furthermore, the system integrates FAISS (Facebook AI Similarity Search) to optimize similarity search, enabling faster and more scalable retrieval of relevant recommendations. To evaluate its effectiveness, the system is tested on four diverse real-world datasets: Yelp, Amazon Beauty, MovieLens, and LastFM, covering multiple domains. Performance is assessed using widely adopted evaluation metrics, including Normalized Discounted Cumulative Gain (NDCG), Precision, Recall, Hit Rate (HR), F1-Score and business-relevant evaluation measures. Extensive experimental results demonstrate that the proposed method, augmented with FAISS, consistently outperforms the existing state-of-the-art recommendation techniques. The code supporting this code is publicly available at: https://github.com/seemasafar/Reco-System-Using-LLM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信