José Ferraz-Caetano*, Filipe Teixeira and M. Natália D. S. Cordeiro*,
{"title":"优化钒催化环氧化反应:机器学习驱动的产率预测和数据增强。","authors":"José Ferraz-Caetano*, Filipe Teixeira and M. Natália D. S. Cordeiro*, ","doi":"10.1021/acs.jcim.5c01104","DOIUrl":null,"url":null,"abstract":"<p >Catalytic epoxidations are key chemical processes serving as essential steps in the synthesis of commercially valuable compounds. This study presents an innovative supervised machine learning (ML) model to predict the reaction yield of the vanadium-catalyzed epoxidation of small alcohols and alkenes. Our framework uncovers relevant chemical characteristics for structure design, offering a pathway for automated optimization of epoxidation reactions. The study also incorporates the concept of data augmentation, handling experimental variability by generating synthetic reactions to densify under-represented data segments. Trained on a curated data set of 273 experimental epoxidation reactions with vanadyl catalyst groups, the model achieved a predictive <i>R</i><sup>2</sup> test score of 90%, with a mean absolute yield prediction error of 4.7%. The ML model offers a high degree of explainability, as descriptor analysis identified key experimental and chemical descriptors that influence catalytic reaction predictions. This represents a significant development in catalytic epoxidation studies, highlighting the critical role of data science in reaction research and catalyst optimization.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 13","pages":"6757–6771"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Vanadium-Catalyzed Epoxidation Reactions: Machine-Learning-Driven Yield Predictions and Data Augmentation\",\"authors\":\"José Ferraz-Caetano*, Filipe Teixeira and M. Natália D. S. Cordeiro*, \",\"doi\":\"10.1021/acs.jcim.5c01104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic epoxidations are key chemical processes serving as essential steps in the synthesis of commercially valuable compounds. This study presents an innovative supervised machine learning (ML) model to predict the reaction yield of the vanadium-catalyzed epoxidation of small alcohols and alkenes. Our framework uncovers relevant chemical characteristics for structure design, offering a pathway for automated optimization of epoxidation reactions. The study also incorporates the concept of data augmentation, handling experimental variability by generating synthetic reactions to densify under-represented data segments. Trained on a curated data set of 273 experimental epoxidation reactions with vanadyl catalyst groups, the model achieved a predictive <i>R</i><sup>2</sup> test score of 90%, with a mean absolute yield prediction error of 4.7%. The ML model offers a high degree of explainability, as descriptor analysis identified key experimental and chemical descriptors that influence catalytic reaction predictions. This represents a significant development in catalytic epoxidation studies, highlighting the critical role of data science in reaction research and catalyst optimization.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 13\",\"pages\":\"6757–6771\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01104\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c01104","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Optimizing Vanadium-Catalyzed Epoxidation Reactions: Machine-Learning-Driven Yield Predictions and Data Augmentation
Catalytic epoxidations are key chemical processes serving as essential steps in the synthesis of commercially valuable compounds. This study presents an innovative supervised machine learning (ML) model to predict the reaction yield of the vanadium-catalyzed epoxidation of small alcohols and alkenes. Our framework uncovers relevant chemical characteristics for structure design, offering a pathway for automated optimization of epoxidation reactions. The study also incorporates the concept of data augmentation, handling experimental variability by generating synthetic reactions to densify under-represented data segments. Trained on a curated data set of 273 experimental epoxidation reactions with vanadyl catalyst groups, the model achieved a predictive R2 test score of 90%, with a mean absolute yield prediction error of 4.7%. The ML model offers a high degree of explainability, as descriptor analysis identified key experimental and chemical descriptors that influence catalytic reaction predictions. This represents a significant development in catalytic epoxidation studies, highlighting the critical role of data science in reaction research and catalyst optimization.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.