Meenalosini Vimal Cruz, Suhaima Jamal, Sibi Chakkaravarthy Sethuraman
{"title":"脑机接口技术在卫生保健中的综合研究:研究展望。","authors":"Meenalosini Vimal Cruz, Suhaima Jamal, Sibi Chakkaravarthy Sethuraman","doi":"10.4103/jmss.jmss_49_24","DOIUrl":null,"url":null,"abstract":"<p><p>The brain-computer interface (BCI) technology has emerged as a groundbreaking innovation with profound implications across diverse domains, particularly in health care. By establishing a direct communication pathway between the human brain and external devices, BCI systems offer unprecedented opportunities for diagnosis, treatment, and rehabilitation, thereby reshaping the landscape of medical practice. However, despite its immense potential, the widespread adoption of BCI technology in clinical settings faces several challenges. These include the need for robust signal acquisition and processing techniques and optimizing user training and adaptation. Overcoming these challenges is crucial to unleashing the complete potential of BCI technology in health care and realizing its promise of personalized, patient-centric care. This review work underscores the transformative potential of BCI technology in revolutionizing medical practice. This paper offers a comprehensive analysis of medical-oriented BCI applications by exploring the various uses of BCI technology and its potential to transform patient care.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"15 ","pages":"16"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180781/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey of Brain-Computer Interface Technology in Health care: Research Perspectives.\",\"authors\":\"Meenalosini Vimal Cruz, Suhaima Jamal, Sibi Chakkaravarthy Sethuraman\",\"doi\":\"10.4103/jmss.jmss_49_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain-computer interface (BCI) technology has emerged as a groundbreaking innovation with profound implications across diverse domains, particularly in health care. By establishing a direct communication pathway between the human brain and external devices, BCI systems offer unprecedented opportunities for diagnosis, treatment, and rehabilitation, thereby reshaping the landscape of medical practice. However, despite its immense potential, the widespread adoption of BCI technology in clinical settings faces several challenges. These include the need for robust signal acquisition and processing techniques and optimizing user training and adaptation. Overcoming these challenges is crucial to unleashing the complete potential of BCI technology in health care and realizing its promise of personalized, patient-centric care. This review work underscores the transformative potential of BCI technology in revolutionizing medical practice. This paper offers a comprehensive analysis of medical-oriented BCI applications by exploring the various uses of BCI technology and its potential to transform patient care.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"15 \",\"pages\":\"16\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.jmss_49_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.jmss_49_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Comprehensive Survey of Brain-Computer Interface Technology in Health care: Research Perspectives.
The brain-computer interface (BCI) technology has emerged as a groundbreaking innovation with profound implications across diverse domains, particularly in health care. By establishing a direct communication pathway between the human brain and external devices, BCI systems offer unprecedented opportunities for diagnosis, treatment, and rehabilitation, thereby reshaping the landscape of medical practice. However, despite its immense potential, the widespread adoption of BCI technology in clinical settings faces several challenges. These include the need for robust signal acquisition and processing techniques and optimizing user training and adaptation. Overcoming these challenges is crucial to unleashing the complete potential of BCI technology in health care and realizing its promise of personalized, patient-centric care. This review work underscores the transformative potential of BCI technology in revolutionizing medical practice. This paper offers a comprehensive analysis of medical-oriented BCI applications by exploring the various uses of BCI technology and its potential to transform patient care.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.