Yiming Li , Fang Li , Na Hong , Manqi Li , Kirk Roberts , Licong Cui , Cui Tao , Hua Xu
{"title":"近期大型语言模型在肺癌患者出院摘要生成中的比较研究。","authors":"Yiming Li , Fang Li , Na Hong , Manqi Li , Kirk Roberts , Licong Cui , Cui Tao , Hua Xu","doi":"10.1016/j.jbi.2025.104867","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Generating discharge summaries is a crucial yet time-consuming task in clinical practice, essential for conveying pertinent patient information and facilitating continuity of care. Recent advancements in large language models (LLMs) have significantly enhanced their capability in understanding and summarizing complex medical texts. This research aims to explore how LLMs can alleviate the burden of manual summarization, streamline workflow efficiencies, and support informed decision-making in healthcare settings.</div></div><div><h3>Materials and methods</h3><div>Clinical notes from a cohort of 1,099 lung cancer patients were utilized, with a subset of 50 patients for testing purposes, and 102 patients used for model fine-tuning. This study evaluates the performance of multiple LLMs, including GPT-3.5, GPT-4, GPT-4o, and LLaMA 3 8b, in generating discharge summaries. Evaluation metrics included token-level analysis (BLEU, ROUGE-1, ROUGE-2, ROUGE-L), semantic similarity scores, and manual evaluation of clinical relevance, factual faithfulness, and completeness. An iterative method was further tested on LLaMA 3 8b using clinical notes of varying lengths to examine the stability of its performance.</div></div><div><h3>Results</h3><div>The study found notable variations in summarization capabilities among LLMs. GPT-4o and fine-tuned LLaMA 3 demonstrated superior token-level evaluation metrics, while manual evaluation further revealed that GPT-4 achieved the highest scores in relevance (4.95 ± 0.22) and factual faithfulness (4.40 ± 0.50), whereas GPT-4o performed best in completeness (4.55 ± 0.69); both models showed comparable overall quality. Semantic similarity scores indicated GPT-4o and LLaMA 3 as leading models in capturing the underlying meaning and context of clinical narratives.</div></div><div><h3>Conclusion</h3><div>This study contributes insights into the efficacy of LLMs for generating discharge summaries, highlighting the potential of automated summarization tools to enhance documentation precision and efficiency, ultimately improving patient care and operational capability in healthcare settings.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"168 ","pages":"Article 104867"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of recent large language models on generating hospital discharge summaries for lung cancer patients\",\"authors\":\"Yiming Li , Fang Li , Na Hong , Manqi Li , Kirk Roberts , Licong Cui , Cui Tao , Hua Xu\",\"doi\":\"10.1016/j.jbi.2025.104867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Generating discharge summaries is a crucial yet time-consuming task in clinical practice, essential for conveying pertinent patient information and facilitating continuity of care. Recent advancements in large language models (LLMs) have significantly enhanced their capability in understanding and summarizing complex medical texts. This research aims to explore how LLMs can alleviate the burden of manual summarization, streamline workflow efficiencies, and support informed decision-making in healthcare settings.</div></div><div><h3>Materials and methods</h3><div>Clinical notes from a cohort of 1,099 lung cancer patients were utilized, with a subset of 50 patients for testing purposes, and 102 patients used for model fine-tuning. This study evaluates the performance of multiple LLMs, including GPT-3.5, GPT-4, GPT-4o, and LLaMA 3 8b, in generating discharge summaries. Evaluation metrics included token-level analysis (BLEU, ROUGE-1, ROUGE-2, ROUGE-L), semantic similarity scores, and manual evaluation of clinical relevance, factual faithfulness, and completeness. An iterative method was further tested on LLaMA 3 8b using clinical notes of varying lengths to examine the stability of its performance.</div></div><div><h3>Results</h3><div>The study found notable variations in summarization capabilities among LLMs. GPT-4o and fine-tuned LLaMA 3 demonstrated superior token-level evaluation metrics, while manual evaluation further revealed that GPT-4 achieved the highest scores in relevance (4.95 ± 0.22) and factual faithfulness (4.40 ± 0.50), whereas GPT-4o performed best in completeness (4.55 ± 0.69); both models showed comparable overall quality. Semantic similarity scores indicated GPT-4o and LLaMA 3 as leading models in capturing the underlying meaning and context of clinical narratives.</div></div><div><h3>Conclusion</h3><div>This study contributes insights into the efficacy of LLMs for generating discharge summaries, highlighting the potential of automated summarization tools to enhance documentation precision and efficiency, ultimately improving patient care and operational capability in healthcare settings.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"168 \",\"pages\":\"Article 104867\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000966\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A comparative study of recent large language models on generating hospital discharge summaries for lung cancer patients
Objective
Generating discharge summaries is a crucial yet time-consuming task in clinical practice, essential for conveying pertinent patient information and facilitating continuity of care. Recent advancements in large language models (LLMs) have significantly enhanced their capability in understanding and summarizing complex medical texts. This research aims to explore how LLMs can alleviate the burden of manual summarization, streamline workflow efficiencies, and support informed decision-making in healthcare settings.
Materials and methods
Clinical notes from a cohort of 1,099 lung cancer patients were utilized, with a subset of 50 patients for testing purposes, and 102 patients used for model fine-tuning. This study evaluates the performance of multiple LLMs, including GPT-3.5, GPT-4, GPT-4o, and LLaMA 3 8b, in generating discharge summaries. Evaluation metrics included token-level analysis (BLEU, ROUGE-1, ROUGE-2, ROUGE-L), semantic similarity scores, and manual evaluation of clinical relevance, factual faithfulness, and completeness. An iterative method was further tested on LLaMA 3 8b using clinical notes of varying lengths to examine the stability of its performance.
Results
The study found notable variations in summarization capabilities among LLMs. GPT-4o and fine-tuned LLaMA 3 demonstrated superior token-level evaluation metrics, while manual evaluation further revealed that GPT-4 achieved the highest scores in relevance (4.95 ± 0.22) and factual faithfulness (4.40 ± 0.50), whereas GPT-4o performed best in completeness (4.55 ± 0.69); both models showed comparable overall quality. Semantic similarity scores indicated GPT-4o and LLaMA 3 as leading models in capturing the underlying meaning and context of clinical narratives.
Conclusion
This study contributes insights into the efficacy of LLMs for generating discharge summaries, highlighting the potential of automated summarization tools to enhance documentation precision and efficiency, ultimately improving patient care and operational capability in healthcare settings.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.