Joe J Tyler, Anthony Davidson, Megan E Poxon, Montserrat Llanses Martinez, Pete Hume, Jason S King, Vassilis Koronakis
{"title":"一类p21活化激酶在肌动蛋白细胞骨架兴奋性调控中的作用。","authors":"Joe J Tyler, Anthony Davidson, Megan E Poxon, Montserrat Llanses Martinez, Pete Hume, Jason S King, Vassilis Koronakis","doi":"10.1242/jcs.263763","DOIUrl":null,"url":null,"abstract":"<p><p>The p21-activated kinases (PAKs) are involved in a range of functions, including the regulation of the actin cytoskeleton. However, although many PAK substrates identified have been implicated in the regulation of the actin cytoskeleton, a coherent picture of the total effect of PAK activation on the state of the actin cytoskeleton is unclear. Here, we show that, in mouse embryonic fibroblasts, inhibition of class I PAK kinase activity by small-molecule inhibitors leads to the constitutive production of the phosphoinositide phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] on the ventral surface of the cell. The formation of patches of PI(3,4,5)P3 remodels the actin cytoskeleton and polarises the cell. From the overexpression of truncated and mutated PAK1 and PAK2 constructs, as well as an in vitro model of PAK activation, we propose that this is driven by a hyper recruitment of class I PAK and PAK-binding partners. This aberrant production of PI(3,4,5)P3 suggests that, by limiting its own recruitment, the kinase activity of class I PAKs acts to downregulate phosphoinositide 3-kinase (PI3K) activity, further highlighting class I PAKs as regulators of PI3K activity and therefore the excitability of the actin cytoskeleton.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273633/pdf/","citationCount":"0","resultStr":"{\"title\":\"A role for class I p21-activated kinases in the regulation of the excitability of the actin cytoskeleton.\",\"authors\":\"Joe J Tyler, Anthony Davidson, Megan E Poxon, Montserrat Llanses Martinez, Pete Hume, Jason S King, Vassilis Koronakis\",\"doi\":\"10.1242/jcs.263763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The p21-activated kinases (PAKs) are involved in a range of functions, including the regulation of the actin cytoskeleton. However, although many PAK substrates identified have been implicated in the regulation of the actin cytoskeleton, a coherent picture of the total effect of PAK activation on the state of the actin cytoskeleton is unclear. Here, we show that, in mouse embryonic fibroblasts, inhibition of class I PAK kinase activity by small-molecule inhibitors leads to the constitutive production of the phosphoinositide phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] on the ventral surface of the cell. The formation of patches of PI(3,4,5)P3 remodels the actin cytoskeleton and polarises the cell. From the overexpression of truncated and mutated PAK1 and PAK2 constructs, as well as an in vitro model of PAK activation, we propose that this is driven by a hyper recruitment of class I PAK and PAK-binding partners. This aberrant production of PI(3,4,5)P3 suggests that, by limiting its own recruitment, the kinase activity of class I PAKs acts to downregulate phosphoinositide 3-kinase (PI3K) activity, further highlighting class I PAKs as regulators of PI3K activity and therefore the excitability of the actin cytoskeleton.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\"138 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273633/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263763\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263763","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A role for class I p21-activated kinases in the regulation of the excitability of the actin cytoskeleton.
The p21-activated kinases (PAKs) are involved in a range of functions, including the regulation of the actin cytoskeleton. However, although many PAK substrates identified have been implicated in the regulation of the actin cytoskeleton, a coherent picture of the total effect of PAK activation on the state of the actin cytoskeleton is unclear. Here, we show that, in mouse embryonic fibroblasts, inhibition of class I PAK kinase activity by small-molecule inhibitors leads to the constitutive production of the phosphoinositide phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] on the ventral surface of the cell. The formation of patches of PI(3,4,5)P3 remodels the actin cytoskeleton and polarises the cell. From the overexpression of truncated and mutated PAK1 and PAK2 constructs, as well as an in vitro model of PAK activation, we propose that this is driven by a hyper recruitment of class I PAK and PAK-binding partners. This aberrant production of PI(3,4,5)P3 suggests that, by limiting its own recruitment, the kinase activity of class I PAKs acts to downregulate phosphoinositide 3-kinase (PI3K) activity, further highlighting class I PAKs as regulators of PI3K activity and therefore the excitability of the actin cytoskeleton.