时空和网络模型的融合,优先考虑单细胞扰动中的多尺度效应。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Osafu Augustine Egbon, John W Hickey, Benedict Anchang
{"title":"时空和网络模型的融合,优先考虑单细胞扰动中的多尺度效应。","authors":"Osafu Augustine Egbon, John W Hickey, Benedict Anchang","doi":"10.1093/bib/bbaf277","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how cells respond to biological perturbations over time and across tissues is key to identifying regulators and networks that inform personalized medicine. Current methods struggle to quantify these dynamic influences in complex multicellular or multitissue systems, especially using single-cell data with spatial and temporal resolution. To address this, we introduce Perturb-STNet, a novel framework that leverages network-based spatiotemporal models to rank spatial and temporal differentially expressed regulators due to perturbation (pSTDERs) driving developmental and disease processes. Perturb-STNet identifies significant pSTDERs, estimates dynamic regulatory networks, and provides detailed visualizations of regulator, cell, and neighborhood interactions critical for understanding disease progression and therapeutic responses. We validated Perturb-STNet using synthetic data and epithelial-to-mesenchymal transition lung cancer data, showing superior performance compared to standard methods. Additionally, we applied it to CODEX single-cell imaging temporal data from a murine melanoma model to study CD8+ T-cell therapy effects, and to MERFISH spatial transcriptomics temporal data to explore inflammation and tissue repair in colitis. In melanoma, Perturb-STNet uncovered regulators like KLRG1 and CD79b, along with mediating pairs and triples (IgD-H2kb, PDL1-H2kb, NKP46-CD117, and FOXP3-CD5-CD25), revealing therapeutic strategies including checkpoint inhibition by targeting PDL1-H2kb to restore CD8+ T cell function, Treg depletion through inhibition of FOXP3-CD5-CD25 axis, and NK cell activation by enhancing NKP46-CD117 interactions. In colitis, Perturb-STNet identified key genes (Csf1r, Col6a1, Lgr4, Myc, and Fzd5) and mediator pairs (Itga5-Flnc, Cd68-Csf1r, Csf1r-Cx3cl1, and Tnfrsf1b-Bmp1) involved in immune regulation, matrix remodeling, and epithelial repair, offering potential therapeutic targets. Overall, Perturb-STNet enables robust identification of spatiotemporal regulatory networks in single-cell perturbation data across diverse disease contexts.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fusion of spatiotemporal and network models to prioritize multiscale effects in single-cell perturbations.\",\"authors\":\"Osafu Augustine Egbon, John W Hickey, Benedict Anchang\",\"doi\":\"10.1093/bib/bbaf277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how cells respond to biological perturbations over time and across tissues is key to identifying regulators and networks that inform personalized medicine. Current methods struggle to quantify these dynamic influences in complex multicellular or multitissue systems, especially using single-cell data with spatial and temporal resolution. To address this, we introduce Perturb-STNet, a novel framework that leverages network-based spatiotemporal models to rank spatial and temporal differentially expressed regulators due to perturbation (pSTDERs) driving developmental and disease processes. Perturb-STNet identifies significant pSTDERs, estimates dynamic regulatory networks, and provides detailed visualizations of regulator, cell, and neighborhood interactions critical for understanding disease progression and therapeutic responses. We validated Perturb-STNet using synthetic data and epithelial-to-mesenchymal transition lung cancer data, showing superior performance compared to standard methods. Additionally, we applied it to CODEX single-cell imaging temporal data from a murine melanoma model to study CD8+ T-cell therapy effects, and to MERFISH spatial transcriptomics temporal data to explore inflammation and tissue repair in colitis. In melanoma, Perturb-STNet uncovered regulators like KLRG1 and CD79b, along with mediating pairs and triples (IgD-H2kb, PDL1-H2kb, NKP46-CD117, and FOXP3-CD5-CD25), revealing therapeutic strategies including checkpoint inhibition by targeting PDL1-H2kb to restore CD8+ T cell function, Treg depletion through inhibition of FOXP3-CD5-CD25 axis, and NK cell activation by enhancing NKP46-CD117 interactions. In colitis, Perturb-STNet identified key genes (Csf1r, Col6a1, Lgr4, Myc, and Fzd5) and mediator pairs (Itga5-Flnc, Cd68-Csf1r, Csf1r-Cx3cl1, and Tnfrsf1b-Bmp1) involved in immune regulation, matrix remodeling, and epithelial repair, offering potential therapeutic targets. Overall, Perturb-STNet enables robust identification of spatiotemporal regulatory networks in single-cell perturbation data across diverse disease contexts.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf277\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf277","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

了解细胞如何随时间和跨组织对生物扰动作出反应,是识别个性化医疗的调节因子和网络的关键。目前的方法很难量化复杂的多细胞或多组织系统中的这些动态影响,特别是使用具有空间和时间分辨率的单细胞数据。为了解决这个问题,我们引入了Perturb-STNet,这是一个利用基于网络的时空模型对驱动发育和疾病过程的扰动(pSTDERs)引起的时空差异表达调节因子进行排序的新框架。Perturb-STNet识别重要的pSTDERs,估计动态调控网络,并提供对理解疾病进展和治疗反应至关重要的调控因子、细胞和邻域相互作用的详细可视化。我们使用合成数据和上皮-间质过渡肺癌数据验证了Perturb-STNet,与标准方法相比显示出优越的性能。此外,我们将其应用于小鼠黑色素瘤模型的CODEX单细胞成像时间数据,以研究CD8+ t细胞治疗的效果,并将其应用于MERFISH空间转录组学时间数据,以探索结肠炎的炎症和组织修复。在黑色素瘤中,Perturb-STNet发现了KLRG1和CD79b等调节因子,以及介导对和三重组(IgD-H2kb、PDL1-H2kb、NKP46-CD117和FOXP3-CD5-CD25),揭示了治疗策略,包括通过靶向PDL1-H2kb来恢复CD8+ T细胞功能的检查点抑制,通过抑制FOXP3-CD5-CD25轴来消耗Treg,以及通过增强NKP46-CD117相互作用来激活NK细胞。在结肠炎中,Perturb-STNet发现了参与免疫调节、基质重塑和上皮修复的关键基因(Csf1r、Col6a1、Lgr4、Myc和Fzd5)和介质对(Itga5-Flnc、Cd68-Csf1r、Csf1r- cx3cl1和Tnfrsf1b-Bmp1),提供了潜在的治疗靶点。总的来说,Perturb-STNet能够在不同疾病背景下识别单细胞扰动数据中的时空调节网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of spatiotemporal and network models to prioritize multiscale effects in single-cell perturbations.

Understanding how cells respond to biological perturbations over time and across tissues is key to identifying regulators and networks that inform personalized medicine. Current methods struggle to quantify these dynamic influences in complex multicellular or multitissue systems, especially using single-cell data with spatial and temporal resolution. To address this, we introduce Perturb-STNet, a novel framework that leverages network-based spatiotemporal models to rank spatial and temporal differentially expressed regulators due to perturbation (pSTDERs) driving developmental and disease processes. Perturb-STNet identifies significant pSTDERs, estimates dynamic regulatory networks, and provides detailed visualizations of regulator, cell, and neighborhood interactions critical for understanding disease progression and therapeutic responses. We validated Perturb-STNet using synthetic data and epithelial-to-mesenchymal transition lung cancer data, showing superior performance compared to standard methods. Additionally, we applied it to CODEX single-cell imaging temporal data from a murine melanoma model to study CD8+ T-cell therapy effects, and to MERFISH spatial transcriptomics temporal data to explore inflammation and tissue repair in colitis. In melanoma, Perturb-STNet uncovered regulators like KLRG1 and CD79b, along with mediating pairs and triples (IgD-H2kb, PDL1-H2kb, NKP46-CD117, and FOXP3-CD5-CD25), revealing therapeutic strategies including checkpoint inhibition by targeting PDL1-H2kb to restore CD8+ T cell function, Treg depletion through inhibition of FOXP3-CD5-CD25 axis, and NK cell activation by enhancing NKP46-CD117 interactions. In colitis, Perturb-STNet identified key genes (Csf1r, Col6a1, Lgr4, Myc, and Fzd5) and mediator pairs (Itga5-Flnc, Cd68-Csf1r, Csf1r-Cx3cl1, and Tnfrsf1b-Bmp1) involved in immune regulation, matrix remodeling, and epithelial repair, offering potential therapeutic targets. Overall, Perturb-STNet enables robust identification of spatiotemporal regulatory networks in single-cell perturbation data across diverse disease contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信