Ali M. Palla , Chien-Chu Lin , Michael J. Trnka , Emme M. Leao , Nektaria Petronikolou , Alma L. Burlingame , Robert K. McGinty , Danica Galonić Fujimori
{"title":"组蛋白去甲基化酶KDM5A的内在紊乱区域通过与核小体酸性斑块和DNA的相互作用激活催化。","authors":"Ali M. Palla , Chien-Chu Lin , Michael J. Trnka , Emme M. Leao , Nektaria Petronikolou , Alma L. Burlingame , Robert K. McGinty , Danica Galonić Fujimori","doi":"10.1016/j.jmb.2025.169301","DOIUrl":null,"url":null,"abstract":"<div><div>Lysine demethylase 5A (KDM5A) plays a key role in the regulation of chromatin accessibility by catalyzing the removal of trimethyl marks on histone H3K4 (H3K4me3). KDM5A is also an oncogenic driver, with overexpression of KDM5A observed in various cancers, including breast, lung, and ovarian cancer. Past studies have characterized the functions of KDM5A domains, including KDM5A interactions with the histone H3 tail, but have yet to identify the broader mechanisms that drive KDM5A binding to the nucleosome. Through investigation of binding and catalysis on nucleosome substrates, we uncovered multivalent interactions of KDM5A with the H2A/H2B acidic patch and DNA that play crucial roles in the regulation of catalytic activity. We also identified an intrinsically disordered region (IDR) containing bifunctional arginine-rich motifs capable of binding to both the histone H2A/H2B acidic patch and nucleosomal DNA that is necessary for catalysis on nucleosome substrates. Our findings both elucidate previously unknown mechanisms that regulate KDM5A catalytic activity and reveal the ability of an IDR to engage in multiple interactions with chromatin.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 19","pages":"Article 169301"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intrinsically Disordered Region of Histone Demethylase KDM5A Activates Catalysis Through Interactions With the Nucleosomal Acidic Patch and DNA\",\"authors\":\"Ali M. Palla , Chien-Chu Lin , Michael J. Trnka , Emme M. Leao , Nektaria Petronikolou , Alma L. Burlingame , Robert K. McGinty , Danica Galonić Fujimori\",\"doi\":\"10.1016/j.jmb.2025.169301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lysine demethylase 5A (KDM5A) plays a key role in the regulation of chromatin accessibility by catalyzing the removal of trimethyl marks on histone H3K4 (H3K4me3). KDM5A is also an oncogenic driver, with overexpression of KDM5A observed in various cancers, including breast, lung, and ovarian cancer. Past studies have characterized the functions of KDM5A domains, including KDM5A interactions with the histone H3 tail, but have yet to identify the broader mechanisms that drive KDM5A binding to the nucleosome. Through investigation of binding and catalysis on nucleosome substrates, we uncovered multivalent interactions of KDM5A with the H2A/H2B acidic patch and DNA that play crucial roles in the regulation of catalytic activity. We also identified an intrinsically disordered region (IDR) containing bifunctional arginine-rich motifs capable of binding to both the histone H2A/H2B acidic patch and nucleosomal DNA that is necessary for catalysis on nucleosome substrates. Our findings both elucidate previously unknown mechanisms that regulate KDM5A catalytic activity and reveal the ability of an IDR to engage in multiple interactions with chromatin.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 19\",\"pages\":\"Article 169301\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283625003675\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625003675","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An Intrinsically Disordered Region of Histone Demethylase KDM5A Activates Catalysis Through Interactions With the Nucleosomal Acidic Patch and DNA
Lysine demethylase 5A (KDM5A) plays a key role in the regulation of chromatin accessibility by catalyzing the removal of trimethyl marks on histone H3K4 (H3K4me3). KDM5A is also an oncogenic driver, with overexpression of KDM5A observed in various cancers, including breast, lung, and ovarian cancer. Past studies have characterized the functions of KDM5A domains, including KDM5A interactions with the histone H3 tail, but have yet to identify the broader mechanisms that drive KDM5A binding to the nucleosome. Through investigation of binding and catalysis on nucleosome substrates, we uncovered multivalent interactions of KDM5A with the H2A/H2B acidic patch and DNA that play crucial roles in the regulation of catalytic activity. We also identified an intrinsically disordered region (IDR) containing bifunctional arginine-rich motifs capable of binding to both the histone H2A/H2B acidic patch and nucleosomal DNA that is necessary for catalysis on nucleosome substrates. Our findings both elucidate previously unknown mechanisms that regulate KDM5A catalytic activity and reveal the ability of an IDR to engage in multiple interactions with chromatin.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.