多维多项式相位估计

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Heedong Do;Namyoon Lee;Angel Lozano
{"title":"多维多项式相位估计","authors":"Heedong Do;Namyoon Lee;Angel Lozano","doi":"10.1109/OJSP.2025.3577503","DOIUrl":null,"url":null,"abstract":"An estimation method is presented for polynomial phase signals, i.e., those adopting the form of a complex exponential whose phase is polynomial in its indices. Transcending the scope of existing techniques, the proposed estimator can handle an arbitrary number of dimensions and an arbitrary set of polynomial degrees along each dimension; the only requirement is that the number of observations per dimension exceeds the highest degree thereon. Embodied by a highly compact sequential algorithm, this estimator is efficient at high signal-to-noise ratios (SNRs), exhibiting a computational complexity that is strictly linear in the number of observations and at most quadratic in the number of polynomial terms. To reinforce the performance at low and medium SNRs, where any phase estimator is bound to be hampered by the inherent ambiguity caused by phase wrappings, suitable functionalities are incorporated and shown to be highly effective.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"651-681"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11027552","citationCount":"0","resultStr":"{\"title\":\"Multidimensional Polynomial Phase Estimation\",\"authors\":\"Heedong Do;Namyoon Lee;Angel Lozano\",\"doi\":\"10.1109/OJSP.2025.3577503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An estimation method is presented for polynomial phase signals, i.e., those adopting the form of a complex exponential whose phase is polynomial in its indices. Transcending the scope of existing techniques, the proposed estimator can handle an arbitrary number of dimensions and an arbitrary set of polynomial degrees along each dimension; the only requirement is that the number of observations per dimension exceeds the highest degree thereon. Embodied by a highly compact sequential algorithm, this estimator is efficient at high signal-to-noise ratios (SNRs), exhibiting a computational complexity that is strictly linear in the number of observations and at most quadratic in the number of polynomial terms. To reinforce the performance at low and medium SNRs, where any phase estimator is bound to be hampered by the inherent ambiguity caused by phase wrappings, suitable functionalities are incorporated and shown to be highly effective.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"651-681\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11027552\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11027552/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11027552/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多项式相位信号的估计方法,即采用复指数形式的信号,其相位在其指标中为多项式。该估计器超越了现有技术的范围,可以处理任意数量的维数和沿每个维的任意多项式度集;唯一的要求是每个维度的观测数超过其最高度。通过高度紧凑的顺序算法,该估计器在高信噪比(SNRs)下有效,显示出在观测数量上严格线性的计算复杂性,并且在多项式项的数量上最多是二次的。为了加强在低信噪比和中等信噪比下的性能,任何相位估计器都必然受到相位包裹引起的固有模糊性的阻碍,我们纳入了合适的功能,并证明了它是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional Polynomial Phase Estimation
An estimation method is presented for polynomial phase signals, i.e., those adopting the form of a complex exponential whose phase is polynomial in its indices. Transcending the scope of existing techniques, the proposed estimator can handle an arbitrary number of dimensions and an arbitrary set of polynomial degrees along each dimension; the only requirement is that the number of observations per dimension exceeds the highest degree thereon. Embodied by a highly compact sequential algorithm, this estimator is efficient at high signal-to-noise ratios (SNRs), exhibiting a computational complexity that is strictly linear in the number of observations and at most quadratic in the number of polynomial terms. To reinforce the performance at low and medium SNRs, where any phase estimator is bound to be hampered by the inherent ambiguity caused by phase wrappings, suitable functionalities are incorporated and shown to be highly effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信