减少量子纠错开销的通用旗共享综合征提取电路

Pei-Hao Liou;Ching-Yi Lai
{"title":"减少量子纠错开销的通用旗共享综合征提取电路","authors":"Pei-Hao Liou;Ching-Yi Lai","doi":"10.1109/TQE.2025.3572764","DOIUrl":null,"url":null,"abstract":"Given that quantum error correction processes are unreliable, an efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements while maintaining low circuit depth, to minimize the circuit area, roughly defined as the product of circuit depth and the number of physical qubits. We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes. Versatile parallelization techniques are employed to minimize the required circuit area, thereby improving the error threshold and overall performance. Specifically, measurement outcomes across multiple rounds of syndrome extraction are integrated into a lookup table decoder, enabling parallelization of multiple stabilizer measurements with shared flag qubits. In addition, we introduce an adaptive technique to reduce the overhead from excessive syndrome extraction. We present flag-sharing and fully parallel schemes for the <inline-formula><tex-math>$[\\![17,1,5]\\!]$</tex-math></inline-formula>, <inline-formula><tex-math>$[\\![19,1,5]\\!]$</tex-math></inline-formula> Calderbank–Shor–Steane (CSS) codes and the <inline-formula><tex-math>$[\\![5,1,3]\\!]$</tex-math></inline-formula> non-CSS code, where the <inline-formula><tex-math>$[\\![5,1,3]\\!]$</tex-math></inline-formula> implementation achieves the minimum known circuit area. Numerical simulations have demonstrated improved pseudothresholds for these codes by up to an order of magnitude compared to previous schemes in the literature.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011921","citationCount":"0","resultStr":"{\"title\":\"Reducing Quantum Error Correction Overhead With Versatile Flag-Sharing Syndrome Extraction Circuits\",\"authors\":\"Pei-Hao Liou;Ching-Yi Lai\",\"doi\":\"10.1109/TQE.2025.3572764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given that quantum error correction processes are unreliable, an efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements while maintaining low circuit depth, to minimize the circuit area, roughly defined as the product of circuit depth and the number of physical qubits. We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes. Versatile parallelization techniques are employed to minimize the required circuit area, thereby improving the error threshold and overall performance. Specifically, measurement outcomes across multiple rounds of syndrome extraction are integrated into a lookup table decoder, enabling parallelization of multiple stabilizer measurements with shared flag qubits. In addition, we introduce an adaptive technique to reduce the overhead from excessive syndrome extraction. We present flag-sharing and fully parallel schemes for the <inline-formula><tex-math>$[\\\\![17,1,5]\\\\!]$</tex-math></inline-formula>, <inline-formula><tex-math>$[\\\\![19,1,5]\\\\!]$</tex-math></inline-formula> Calderbank–Shor–Steane (CSS) codes and the <inline-formula><tex-math>$[\\\\![5,1,3]\\\\!]$</tex-math></inline-formula> non-CSS code, where the <inline-formula><tex-math>$[\\\\![5,1,3]\\\\!]$</tex-math></inline-formula> implementation achieves the minimum known circuit area. Numerical simulations have demonstrated improved pseudothresholds for these codes by up to an order of magnitude compared to previous schemes in the literature.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011921\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11011921/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11011921/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到量子纠错过程是不可靠的,一个有效的错误综合征提取电路应该使用更少的辅助量子比特、量子门和测量,同时保持较低的电路深度,以最小化电路面积,大致定义为电路深度和物理量子比特数量的乘积。我们提出了一种基于共享标记量子比特的量子稳定码并行标记综合征提取方法。采用了多种并行化技术来最小化所需的电路面积,从而提高了误差阈值和整体性能。具体来说,多轮综合征提取的测量结果被集成到一个查找表解码器中,从而实现多个具有共享标志量子位的稳定测量的并行化。此外,我们还引入了一种自适应技术,以减少过多的综合征提取带来的开销。我们提出了$[\![17,1,5]\!的标志共享和完全并行方案。美元,美元[\ ![19日1,5]\ !$ calderbank - shors - steane (CSS)代码和$[\![5,1,3]\!$非css代码,其中$[\![5,1,3]\!$实现实现最小的已知电路面积。数值模拟表明,与文献中以前的方案相比,这些代码的伪阈值提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Quantum Error Correction Overhead With Versatile Flag-Sharing Syndrome Extraction Circuits
Given that quantum error correction processes are unreliable, an efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements while maintaining low circuit depth, to minimize the circuit area, roughly defined as the product of circuit depth and the number of physical qubits. We propose to design parallel flagged syndrome extraction with shared flag qubits for quantum stabilizer codes. Versatile parallelization techniques are employed to minimize the required circuit area, thereby improving the error threshold and overall performance. Specifically, measurement outcomes across multiple rounds of syndrome extraction are integrated into a lookup table decoder, enabling parallelization of multiple stabilizer measurements with shared flag qubits. In addition, we introduce an adaptive technique to reduce the overhead from excessive syndrome extraction. We present flag-sharing and fully parallel schemes for the $[\![17,1,5]\!]$, $[\![19,1,5]\!]$ Calderbank–Shor–Steane (CSS) codes and the $[\![5,1,3]\!]$ non-CSS code, where the $[\![5,1,3]\!]$ implementation achieves the minimum known circuit area. Numerical simulations have demonstrated improved pseudothresholds for these codes by up to an order of magnitude compared to previous schemes in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信