Daniel Jeremiah , Husnain Rafiq , Vinh Thong Ta , Muhammad Usman , Mohsin Raza , Muhammad Awais
{"title":"NIOM-DGA:基于ml的DGA检测模型","authors":"Daniel Jeremiah , Husnain Rafiq , Vinh Thong Ta , Muhammad Usman , Mohsin Raza , Muhammad Awais","doi":"10.1016/j.cose.2025.104561","DOIUrl":null,"url":null,"abstract":"<div><div>Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods. This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms (NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly improves DGA detection compared to existing methods, advancing practical threat detection capabilities.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"157 ","pages":"Article 104561"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection\",\"authors\":\"Daniel Jeremiah , Husnain Rafiq , Vinh Thong Ta , Muhammad Usman , Mohsin Raza , Muhammad Awais\",\"doi\":\"10.1016/j.cose.2025.104561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods. This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms (NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly improves DGA detection compared to existing methods, advancing practical threat detection capabilities.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"157 \",\"pages\":\"Article 104561\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404825002500\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825002500","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection
Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods. This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms (NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly improves DGA detection compared to existing methods, advancing practical threat detection capabilities.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.