Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista
{"title":"单侧交叉最小化的量子算法","authors":"Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista","doi":"10.1016/j.tcs.2025.115424","DOIUrl":null,"url":null,"abstract":"<div><div>We present singly-exponential quantum algorithms for the <span>One-Sided Crossing Minimization</span> (OSCM) problem. Given an <em>n</em>-vertex bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>⊆</mo><mi>U</mi><mo>×</mo><mi>V</mi><mo>)</mo></math></span>, a 2<em>-level drawing</em> <span><math><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></math></span> of <em>G</em> is described by a linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mi>U</mi><mo>↔</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>U</mi><mo>|</mo><mo>}</mo></math></span> of <em>U</em> and linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>↔</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>V</mi><mo>|</mo><mo>}</mo></math></span> of <em>V</em>. For a fixed linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> of <em>U</em>, the OSCM problem seeks to find a linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> of <em>V</em> that yields a 2-level drawing <span><math><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></math></span> of <em>G</em> with the minimum number of edge crossings. We show that OSCM can be viewed as a set problem over <em>V</em> amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [<em>Quantum Speedups for Exponential-Time Dynamic Programming Algorithms</em>. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.728</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time and polynomial space.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1052 ","pages":"Article 115424"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum algorithms for one-sided crossing minimization\",\"authors\":\"Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista\",\"doi\":\"10.1016/j.tcs.2025.115424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present singly-exponential quantum algorithms for the <span>One-Sided Crossing Minimization</span> (OSCM) problem. Given an <em>n</em>-vertex bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>U</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>⊆</mo><mi>U</mi><mo>×</mo><mi>V</mi><mo>)</mo></math></span>, a 2<em>-level drawing</em> <span><math><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></math></span> of <em>G</em> is described by a linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mi>U</mi><mo>↔</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>U</mi><mo>|</mo><mo>}</mo></math></span> of <em>U</em> and linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>:</mo><mi>V</mi><mo>↔</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>|</mo><mi>V</mi><mo>|</mo><mo>}</mo></math></span> of <em>V</em>. For a fixed linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> of <em>U</em>, the OSCM problem seeks to find a linear ordering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> of <em>V</em> that yields a 2-level drawing <span><math><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo></math></span> of <em>G</em> with the minimum number of edge crossings. We show that OSCM can be viewed as a set problem over <em>V</em> amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [<em>Quantum Speedups for Exponential-Time Dynamic Programming Algorithms</em>. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.728</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time and polynomial space.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1052 \",\"pages\":\"Article 115424\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003627\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003627","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantum algorithms for one-sided crossing minimization
We present singly-exponential quantum algorithms for the One-Sided Crossing Minimization (OSCM) problem. Given an n-vertex bipartite graph , a 2-level drawing of G is described by a linear ordering of U and linear ordering of V. For a fixed linear ordering of U, the OSCM problem seeks to find a linear ordering of V that yields a 2-level drawing of G with the minimum number of edge crossings. We show that OSCM can be viewed as a set problem over V amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [Quantum Speedups for Exponential-Time Dynamic Programming Algorithms. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in time and polynomial space.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.