超晶格中极化和弛豫的异常同步行为

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Liu , T. Ochirkhuyag , W. Feng , B. He , L. Wu , H. Qi , J. Chen , W. Wang , H. Zheng , Y. Liu , D. Odkhuu
{"title":"超晶格中极化和弛豫的异常同步行为","authors":"S. Liu ,&nbsp;T. Ochirkhuyag ,&nbsp;W. Feng ,&nbsp;B. He ,&nbsp;L. Wu ,&nbsp;H. Qi ,&nbsp;J. Chen ,&nbsp;W. Wang ,&nbsp;H. Zheng ,&nbsp;Y. Liu ,&nbsp;D. Odkhuu","doi":"10.1016/j.actamat.2025.121184","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layered counterpart rather than the quasiperovskite counterpart in the <span><math><mrow><mi>F</mi><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> phase dominant superlattice, which is essentially contrariwise in the <span><math><mrow><mi>A</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mi>a</mi><mi>m</mi></mrow></math></span> phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span>, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>rec</mi></mrow></msub></math></span> of 8.7 J/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> and efficiency <span><math><mi>η</mi></math></span> of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>LaTiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121184"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual synchronous behavior of polarization and relaxation in Aurivillius superlattice\",\"authors\":\"S. Liu ,&nbsp;T. Ochirkhuyag ,&nbsp;W. Feng ,&nbsp;B. He ,&nbsp;L. Wu ,&nbsp;H. Qi ,&nbsp;J. Chen ,&nbsp;W. Wang ,&nbsp;H. Zheng ,&nbsp;Y. Liu ,&nbsp;D. Odkhuu\",\"doi\":\"10.1016/j.actamat.2025.121184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layered counterpart rather than the quasiperovskite counterpart in the <span><math><mrow><mi>F</mi><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> phase dominant superlattice, which is essentially contrariwise in the <span><math><mrow><mi>A</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mi>a</mi><mi>m</mi></mrow></math></span> phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span>, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>rec</mi></mrow></msub></math></span> of 8.7 J/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> and efficiency <span><math><mi>η</mi></math></span> of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>LaTiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121184\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425004720\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004720","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铋层结构铁电(BLSF)材料具有高温稳定性和优异的耐电击穿性能,具有储能应用的潜力;然而,它们在杂质元素上具有极化和弛豫的异步行为。本文通过系统的计算和实验研究,我们报告了与典型的钙钛矿和铋层状结构铁电结构形成鲜明对比的是,Bi3TiNbO9中高含量的La可以同时大大增强介电弛豫和面外极化。潜在的机制是在序列无序的Bi2O2层状对应物中而不是在Fmmm相优势超晶格中的准钙钛矿对应物中操纵La-O键,这在大多数实验中制备的A21am相优势样品中基本上是相反的。此外,我们证明了原子缺陷工程,特别是由Bi3TiNbO9中La3+离子取代Bi引起的线位错,可以提供额外的面外极化。结果表明,Bi2LaTiNbO9超晶格的可回收能量密度Wrec为8.7 J/cm3,效率η为80.5%,具有优异的热稳定性和超快的放电速率。本研究结果在基于blsf的陶瓷介质储能研究领域取得了重大进展,为高温高性能储能电容器的发展提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unusual synchronous behavior of polarization and relaxation in Aurivillius superlattice
Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in Bi3TiNbO9 can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered Bi2O2 layered counterpart rather than the quasiperovskite counterpart in the Fmmm phase dominant superlattice, which is essentially contrariwise in the A21am phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La3+ ions in Bi3TiNbO9, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density Wrec of 8.7 J/cm3 and efficiency η of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in Bi2LaTiNbO9 superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信