S. Liu , T. Ochirkhuyag , W. Feng , B. He , L. Wu , H. Qi , J. Chen , W. Wang , H. Zheng , Y. Liu , D. Odkhuu
{"title":"超晶格中极化和弛豫的异常同步行为","authors":"S. Liu , T. Ochirkhuyag , W. Feng , B. He , L. Wu , H. Qi , J. Chen , W. Wang , H. Zheng , Y. Liu , D. Odkhuu","doi":"10.1016/j.actamat.2025.121184","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layered counterpart rather than the quasiperovskite counterpart in the <span><math><mrow><mi>F</mi><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> phase dominant superlattice, which is essentially contrariwise in the <span><math><mrow><mi>A</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mi>a</mi><mi>m</mi></mrow></math></span> phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span>, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>rec</mi></mrow></msub></math></span> of 8.7 J/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> and efficiency <span><math><mi>η</mi></math></span> of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>LaTiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121184"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual synchronous behavior of polarization and relaxation in Aurivillius superlattice\",\"authors\":\"S. Liu , T. Ochirkhuyag , W. Feng , B. He , L. Wu , H. Qi , J. Chen , W. Wang , H. Zheng , Y. Liu , D. Odkhuu\",\"doi\":\"10.1016/j.actamat.2025.121184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layered counterpart rather than the quasiperovskite counterpart in the <span><math><mrow><mi>F</mi><mi>m</mi><mi>m</mi><mi>m</mi></mrow></math></span> phase dominant superlattice, which is essentially contrariwise in the <span><math><mrow><mi>A</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mi>a</mi><mi>m</mi></mrow></math></span> phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions in Bi<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>TiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span>, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>rec</mi></mrow></msub></math></span> of 8.7 J/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> and efficiency <span><math><mi>η</mi></math></span> of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>LaTiNbO<span><math><msub><mrow></mrow><mrow><mn>9</mn></mrow></msub></math></span> superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121184\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425004720\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004720","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unusual synchronous behavior of polarization and relaxation in Aurivillius superlattice
Bismuth layer-structure ferroelectric (BLSF) materials have potential for energy storage applications because of their high-temperature stability and excellent resistance to electric breakdown; however, they suffer from an asynchronous behavior of polarization and relaxation upon an impurity element. Herein, using systematic computational and experimental investigations, we report that, in sharp contrast to typical perovskite and bismuth layer-structure ferroelectric structures, the high-content La in BiTiNbO can produce greatly enhanced dielectric relaxation and out-of-plane polarization simultaneously. The underlying mechanism is the manipulation of La-O bonds within sequence-disordered BiO layered counterpart rather than the quasiperovskite counterpart in the phase dominant superlattice, which is essentially contrariwise in the phase dominant sample prepared in most previous experiments. Furthermore, we demonstrate that atomic defect engineering, specifically line dislocation resulting from the replacement of Bi with La ions in BiTiNbO, can provide an additional out-of-plane polarization. As a result, a high recoverable energy density of 8.7 J/cm and efficiency of 80.5%, together with excellent thermal stability and an ultra-fast discharge rate, are achieved in BiLaTiNbO superlattice. The present results yield a significant advance in the research field of dielectric energy storage of BLSF-based ceramics, suggesting a new paradigm that may stimulate the development of high-temperature, high-performance energy storage capacitors.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.