Florian P. Mahner, Lukas Muttenthaler, Umut Güçlü, Martin N. Hebart
{"title":"深层神经网络与人类的表征对齐的维度","authors":"Florian P. Mahner, Lukas Muttenthaler, Umut Güçlü, Martin N. Hebart","doi":"10.1038/s42256-025-01041-7","DOIUrl":null,"url":null,"abstract":"<p>Determining the similarities and differences between humans and artificial intelligence (AI) is an important goal in both computational cognitive neuroscience and machine learning, promising a deeper understanding of human cognition and safer, more reliable AI systems. Much previous work comparing representations in humans and AI has relied on global, scalar measures to quantify their alignment. However, without explicit hypotheses, these measures only inform us about the degree of alignment, not the factors that determine it. To address this challenge, we propose a generic framework to compare human and AI representations, based on identifying latent representational dimensions underlying the same behaviour in both domains. Applying this framework to humans and a deep neural network (DNN) model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic properties, indicating divergent strategies for representing images. Although in silico experiments showed seemingly consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment and offer a means for improving their comparability.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"12 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensions underlying the representational alignment of deep neural networks with humans\",\"authors\":\"Florian P. Mahner, Lukas Muttenthaler, Umut Güçlü, Martin N. Hebart\",\"doi\":\"10.1038/s42256-025-01041-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determining the similarities and differences between humans and artificial intelligence (AI) is an important goal in both computational cognitive neuroscience and machine learning, promising a deeper understanding of human cognition and safer, more reliable AI systems. Much previous work comparing representations in humans and AI has relied on global, scalar measures to quantify their alignment. However, without explicit hypotheses, these measures only inform us about the degree of alignment, not the factors that determine it. To address this challenge, we propose a generic framework to compare human and AI representations, based on identifying latent representational dimensions underlying the same behaviour in both domains. Applying this framework to humans and a deep neural network (DNN) model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic properties, indicating divergent strategies for representing images. Although in silico experiments showed seemingly consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment and offer a means for improving their comparability.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01041-7\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01041-7","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dimensions underlying the representational alignment of deep neural networks with humans
Determining the similarities and differences between humans and artificial intelligence (AI) is an important goal in both computational cognitive neuroscience and machine learning, promising a deeper understanding of human cognition and safer, more reliable AI systems. Much previous work comparing representations in humans and AI has relied on global, scalar measures to quantify their alignment. However, without explicit hypotheses, these measures only inform us about the degree of alignment, not the factors that determine it. To address this challenge, we propose a generic framework to compare human and AI representations, based on identifying latent representational dimensions underlying the same behaviour in both domains. Applying this framework to humans and a deep neural network (DNN) model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic properties, indicating divergent strategies for representing images. Although in silico experiments showed seemingly consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment and offer a means for improving their comparability.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.