Kusala Anupindi , Julia Malachowski , Isabella Hodson , Daniel Zhu , Carl H. June , Bruce L. Levine
{"title":"嵌合抗原受体T细胞免疫治疗癌症的下一个创新。","authors":"Kusala Anupindi , Julia Malachowski , Isabella Hodson , Daniel Zhu , Carl H. June , Bruce L. Levine","doi":"10.1016/j.jcyt.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Chimeric antigen receptor (CAR) T cell therapy has transformed cancer treatment and the field of immunotherapy. Although CAR T cell therapy has demonstrated considerable clinical success for the treatment of B cell malignancies, expanding its therapeutic efficacy and accessibility for other hematological malignancies and solid tumors remains a challenge. Key limitations include manufacturing constraints and therapeutic hurdles, such as CAR T cell persistence, proliferation, tumor trafficking and treatment-related toxicities. To overcome the unique challenges associated with CAR T cell therapy, novel technological advancements in CAR design, delivery, and T cell functionality can be leveraged. This review will explore three innovative approaches: gene editing and silencing, armoring strategies and <em>in vivo</em> CAR gene delivery. These approaches are all aimed at enhancing the accessibility and therapeutic efficacy of CAR T cell therapy in hematological malignancies.</div></div>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":"27 7","pages":"Pages 795-811"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The next innovations in chimeric antigen receptor T cell immunotherapies for cancer\",\"authors\":\"Kusala Anupindi , Julia Malachowski , Isabella Hodson , Daniel Zhu , Carl H. June , Bruce L. Levine\",\"doi\":\"10.1016/j.jcyt.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chimeric antigen receptor (CAR) T cell therapy has transformed cancer treatment and the field of immunotherapy. Although CAR T cell therapy has demonstrated considerable clinical success for the treatment of B cell malignancies, expanding its therapeutic efficacy and accessibility for other hematological malignancies and solid tumors remains a challenge. Key limitations include manufacturing constraints and therapeutic hurdles, such as CAR T cell persistence, proliferation, tumor trafficking and treatment-related toxicities. To overcome the unique challenges associated with CAR T cell therapy, novel technological advancements in CAR design, delivery, and T cell functionality can be leveraged. This review will explore three innovative approaches: gene editing and silencing, armoring strategies and <em>in vivo</em> CAR gene delivery. These approaches are all aimed at enhancing the accessibility and therapeutic efficacy of CAR T cell therapy in hematological malignancies.</div></div>\",\"PeriodicalId\":50597,\"journal\":{\"name\":\"Cytotherapy\",\"volume\":\"27 7\",\"pages\":\"Pages 795-811\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1465324925007200\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465324925007200","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The next innovations in chimeric antigen receptor T cell immunotherapies for cancer
Chimeric antigen receptor (CAR) T cell therapy has transformed cancer treatment and the field of immunotherapy. Although CAR T cell therapy has demonstrated considerable clinical success for the treatment of B cell malignancies, expanding its therapeutic efficacy and accessibility for other hematological malignancies and solid tumors remains a challenge. Key limitations include manufacturing constraints and therapeutic hurdles, such as CAR T cell persistence, proliferation, tumor trafficking and treatment-related toxicities. To overcome the unique challenges associated with CAR T cell therapy, novel technological advancements in CAR design, delivery, and T cell functionality can be leveraged. This review will explore three innovative approaches: gene editing and silencing, armoring strategies and in vivo CAR gene delivery. These approaches are all aimed at enhancing the accessibility and therapeutic efficacy of CAR T cell therapy in hematological malignancies.
期刊介绍:
The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.