B Ethan Nunley, Amelia Weixler, Hyeong Geon Kim, Hong Xie, Jaydee Sereewit, Pooneh Hajian, Sean Ellis, Margaret G Mills, Ailyn C Pérez-Osorio, Stephanie Goya, Jolene Gov, Rebecca Dewar, Goncalo Fernandes, Kate E Templeton, Daniel M Maloney, Alexander L Greninger, Pavitra Roychoudhury
{"title":"呼吸道合胞病毒全基因组测序切片扩增子面板的临床性能评价。","authors":"B Ethan Nunley, Amelia Weixler, Hyeong Geon Kim, Hong Xie, Jaydee Sereewit, Pooneh Hajian, Sean Ellis, Margaret G Mills, Ailyn C Pérez-Osorio, Stephanie Goya, Jolene Gov, Rebecca Dewar, Goncalo Fernandes, Kate E Templeton, Daniel M Maloney, Alexander L Greninger, Pavitra Roychoudhury","doi":"10.1016/j.jmoldx.2025.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate genomic characterization of respiratory syncytial virus (RSV) is crucial for studies of epidemiology and viral evolution, including monitoring potential escape from newly authorized vaccines and prophylactic monoclonal antibodies. We adapted a viral genome tiling amplicon panel (UW-ARTIC) and developed a custom bioinformatic pipeline for high-throughput, cost-effective sequencing of both RSV-A and RSV-B subgroups. We established genome acceptability criteria and determined the performance characteristics of the panel including assay sensitivity, specificity, breadth of genome recovery, accuracy, and precision using contrived and remnant clinical specimens. High-quality genomes (>95% genome completeness; >500X and >1000X average depth for whole genome and fusion gene respectively) were recovered from samples with Ct ≤ 30 (∼594 and 2,004 copies per reaction for RSV-A and RSV-B respectively). Minor variants were accurately identified at >5% allele frequency. The assay showed high accuracy when compared to Sanger, shotgun metagenomic, and hybridization capture-based sequencing, as well as high repeatability and reproducibility. The UW-ARTIC RSV panel has utility for cost-effective RSV genome recovery in public health, clinical, and research applications. It has been used to generate FDA-reportable data for clinical trials of RSV antiviral products, with robust performance in global samples from as recently as the 2023/24 season. Continued genomic surveillance and future updates to primers will be essential for continued recovery of genomes as RSV continues to evolve.</p>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical performance evaluation of a tiling amplicon panel for whole genome sequencing of respiratory syncytial virus.\",\"authors\":\"B Ethan Nunley, Amelia Weixler, Hyeong Geon Kim, Hong Xie, Jaydee Sereewit, Pooneh Hajian, Sean Ellis, Margaret G Mills, Ailyn C Pérez-Osorio, Stephanie Goya, Jolene Gov, Rebecca Dewar, Goncalo Fernandes, Kate E Templeton, Daniel M Maloney, Alexander L Greninger, Pavitra Roychoudhury\",\"doi\":\"10.1016/j.jmoldx.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate genomic characterization of respiratory syncytial virus (RSV) is crucial for studies of epidemiology and viral evolution, including monitoring potential escape from newly authorized vaccines and prophylactic monoclonal antibodies. We adapted a viral genome tiling amplicon panel (UW-ARTIC) and developed a custom bioinformatic pipeline for high-throughput, cost-effective sequencing of both RSV-A and RSV-B subgroups. We established genome acceptability criteria and determined the performance characteristics of the panel including assay sensitivity, specificity, breadth of genome recovery, accuracy, and precision using contrived and remnant clinical specimens. High-quality genomes (>95% genome completeness; >500X and >1000X average depth for whole genome and fusion gene respectively) were recovered from samples with Ct ≤ 30 (∼594 and 2,004 copies per reaction for RSV-A and RSV-B respectively). Minor variants were accurately identified at >5% allele frequency. The assay showed high accuracy when compared to Sanger, shotgun metagenomic, and hybridization capture-based sequencing, as well as high repeatability and reproducibility. The UW-ARTIC RSV panel has utility for cost-effective RSV genome recovery in public health, clinical, and research applications. It has been used to generate FDA-reportable data for clinical trials of RSV antiviral products, with robust performance in global samples from as recently as the 2023/24 season. Continued genomic surveillance and future updates to primers will be essential for continued recovery of genomes as RSV continues to evolve.</p>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmoldx.2025.05.005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmoldx.2025.05.005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Clinical performance evaluation of a tiling amplicon panel for whole genome sequencing of respiratory syncytial virus.
Accurate genomic characterization of respiratory syncytial virus (RSV) is crucial for studies of epidemiology and viral evolution, including monitoring potential escape from newly authorized vaccines and prophylactic monoclonal antibodies. We adapted a viral genome tiling amplicon panel (UW-ARTIC) and developed a custom bioinformatic pipeline for high-throughput, cost-effective sequencing of both RSV-A and RSV-B subgroups. We established genome acceptability criteria and determined the performance characteristics of the panel including assay sensitivity, specificity, breadth of genome recovery, accuracy, and precision using contrived and remnant clinical specimens. High-quality genomes (>95% genome completeness; >500X and >1000X average depth for whole genome and fusion gene respectively) were recovered from samples with Ct ≤ 30 (∼594 and 2,004 copies per reaction for RSV-A and RSV-B respectively). Minor variants were accurately identified at >5% allele frequency. The assay showed high accuracy when compared to Sanger, shotgun metagenomic, and hybridization capture-based sequencing, as well as high repeatability and reproducibility. The UW-ARTIC RSV panel has utility for cost-effective RSV genome recovery in public health, clinical, and research applications. It has been used to generate FDA-reportable data for clinical trials of RSV antiviral products, with robust performance in global samples from as recently as the 2023/24 season. Continued genomic surveillance and future updates to primers will be essential for continued recovery of genomes as RSV continues to evolve.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.