转录组学和“维度的诅咒”:ml模型的蒙特卡罗模拟作为分析生物过程标记物任务中的多维数据的工具。

Q3 Medicine
G J Osmak, M V Pisklova
{"title":"转录组学和“维度的诅咒”:ml模型的蒙特卡罗模拟作为分析生物过程标记物任务中的多维数据的工具。","authors":"G J Osmak, M V Pisklova","doi":"10.31857/S0026898425010117, EDN: HCCMTU","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput transcriptomic research methods provide the assessment of a vast number of factors valuable for researchers. At the same time, \"curse of dimensionality\" issues arise, which lead to increasing the requirements on data processing and analysis methods. In this study, we propose a new algorithm that combines Monte Carlo methods and machine learning. This algorithm will enable feature space reduction by highlighting genes most likely associated with the investigated diseases. Our approach allows one not only to generate a set of \"interesting\" genes but also to assign weight to each gene, indicating its \"importance.\" This measure can be used in subsequent statistical analysis, visualization, and interpretation of results. Algorithm performance was demonstrated on open transcriptomic data of patients with HCM (GSE36961 and GSE1145). The analysis revealed genes MYH6, FCN3, RASD1, and SERPINA3, which is in good agreement with the available literature.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"59 1","pages":"154-161"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Transcriptomics and the \\\"Curse of Dimensionality\\\": Monte Carlo Simulations of ML-Models as a Tool for Analyzing Multidimensional Data in Tasks of Searching Markers of Biological Processes].\",\"authors\":\"G J Osmak, M V Pisklova\",\"doi\":\"10.31857/S0026898425010117, EDN: HCCMTU\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-throughput transcriptomic research methods provide the assessment of a vast number of factors valuable for researchers. At the same time, \\\"curse of dimensionality\\\" issues arise, which lead to increasing the requirements on data processing and analysis methods. In this study, we propose a new algorithm that combines Monte Carlo methods and machine learning. This algorithm will enable feature space reduction by highlighting genes most likely associated with the investigated diseases. Our approach allows one not only to generate a set of \\\"interesting\\\" genes but also to assign weight to each gene, indicating its \\\"importance.\\\" This measure can be used in subsequent statistical analysis, visualization, and interpretation of results. Algorithm performance was demonstrated on open transcriptomic data of patients with HCM (GSE36961 and GSE1145). The analysis revealed genes MYH6, FCN3, RASD1, and SERPINA3, which is in good agreement with the available literature.</p>\",\"PeriodicalId\":39818,\"journal\":{\"name\":\"Molekulyarnaya Biologiya\",\"volume\":\"59 1\",\"pages\":\"154-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molekulyarnaya Biologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0026898425010117, EDN: HCCMTU\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898425010117, EDN: HCCMTU","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

高通量转录组学研究方法为研究人员提供了大量有价值因素的评估。同时也出现了“维数诅咒”问题,对数据处理和分析方法的要求越来越高。在这项研究中,我们提出了一种结合蒙特卡罗方法和机器学习的新算法。该算法将通过突出显示与所研究疾病最有可能相关的基因来实现特征空间缩减。我们的方法不仅可以生成一组“有趣的”基因,还可以为每个基因分配权重,表明其“重要性”。该测量可用于后续的统计分析、可视化和结果解释。在HCM患者(GSE36961和GSE1145)的公开转录组数据上验证了算法的性能。分析发现了MYH6、FCN3、RASD1和SERPINA3基因,这与现有文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Transcriptomics and the "Curse of Dimensionality": Monte Carlo Simulations of ML-Models as a Tool for Analyzing Multidimensional Data in Tasks of Searching Markers of Biological Processes].

High-throughput transcriptomic research methods provide the assessment of a vast number of factors valuable for researchers. At the same time, "curse of dimensionality" issues arise, which lead to increasing the requirements on data processing and analysis methods. In this study, we propose a new algorithm that combines Monte Carlo methods and machine learning. This algorithm will enable feature space reduction by highlighting genes most likely associated with the investigated diseases. Our approach allows one not only to generate a set of "interesting" genes but also to assign weight to each gene, indicating its "importance." This measure can be used in subsequent statistical analysis, visualization, and interpretation of results. Algorithm performance was demonstrated on open transcriptomic data of patients with HCM (GSE36961 and GSE1145). The analysis revealed genes MYH6, FCN3, RASD1, and SERPINA3, which is in good agreement with the available literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信