Huimin Yu, Yili Li, Yuehong Yang, Yanjin Qian, Xia Gao, Xichan Wang, Ping Zhan, Dekun Tang, Mei Qin, Yan Qian
{"title":"丹参酮IIA通过调节miR-449a/ACSL4抑制神经元铁下垂,减轻脑缺血再灌注损伤。","authors":"Huimin Yu, Yili Li, Yuehong Yang, Yanjin Qian, Xia Gao, Xichan Wang, Ping Zhan, Dekun Tang, Mei Qin, Yan Qian","doi":"10.1007/s11011-025-01660-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral ischemia‒reperfusion injury (CI/RI) plays a significant role in the initiation of ischemic stroke. This study aimed to explore the influence of Tan (tanshinone) IIA in the treatment of neuronal ferroptosis induced by CI/RI, along with the associated molecular mechanisms. A CI/RI model was created by occluding the middle cerebral artery in rats (MCAO/R). A cellular CI/RI model was established with SH-SY5Y cells that were subjected to oxygen‒glucose deprivation followed by subsequent reperfusion (OGD/R). The optimal concentration for maintaining cell viability was evaluated through the CCK-8 assay. The expression levels of ferroptosis and oxidative stress-related genes in rat brain tissue and SH-SY5Y cells were determined, and the molecular mechanism by which Tan IIA regulates ferroptosis during CI/RI treatment was verified by bioinformatics analysis, RT‒qPCR, and dual-luciferase reporter assays. The results revealed that Tan IIA relieved CI/RI injury and inflammation by inhibiting ferroptosis in MCAO/R rat brain neurons. Our experimental results demonstrated that Tan IIA suppressed the progression of OGD/R and alleviated inflammation in SH-SY5Y cells. Ferroptosis affected the concentrations of Fe<sup>2+</sup>, ROS, and MDA in the CI/RI model while simultaneously increasing the expression of miR-449a. In terms of the molecular mechanism, Tan IIA inhibited OGD/R-induced neural ferroptosis, and this mechanism of action may involve Tan IIA promoting the downregulation of ACSL4 expression by targeting miR-449a within cells, thereby inhibiting ferroptosis in cells induced by OGD/R. Our research results indicate that Tan IIA relieved CI/RI injury and inflammation by alleviating neuronal ferroptosis, and this regulatory effect may be achieved through the miR-449a/ACSL4 molecular axis.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 6","pages":"231"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanshinone IIA inhibits neuronal ferroptosis and relieves cerebral ischemia‒reperfusion injury by regulating miR-449a/ACSL4.\",\"authors\":\"Huimin Yu, Yili Li, Yuehong Yang, Yanjin Qian, Xia Gao, Xichan Wang, Ping Zhan, Dekun Tang, Mei Qin, Yan Qian\",\"doi\":\"10.1007/s11011-025-01660-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral ischemia‒reperfusion injury (CI/RI) plays a significant role in the initiation of ischemic stroke. This study aimed to explore the influence of Tan (tanshinone) IIA in the treatment of neuronal ferroptosis induced by CI/RI, along with the associated molecular mechanisms. A CI/RI model was created by occluding the middle cerebral artery in rats (MCAO/R). A cellular CI/RI model was established with SH-SY5Y cells that were subjected to oxygen‒glucose deprivation followed by subsequent reperfusion (OGD/R). The optimal concentration for maintaining cell viability was evaluated through the CCK-8 assay. The expression levels of ferroptosis and oxidative stress-related genes in rat brain tissue and SH-SY5Y cells were determined, and the molecular mechanism by which Tan IIA regulates ferroptosis during CI/RI treatment was verified by bioinformatics analysis, RT‒qPCR, and dual-luciferase reporter assays. The results revealed that Tan IIA relieved CI/RI injury and inflammation by inhibiting ferroptosis in MCAO/R rat brain neurons. Our experimental results demonstrated that Tan IIA suppressed the progression of OGD/R and alleviated inflammation in SH-SY5Y cells. Ferroptosis affected the concentrations of Fe<sup>2+</sup>, ROS, and MDA in the CI/RI model while simultaneously increasing the expression of miR-449a. In terms of the molecular mechanism, Tan IIA inhibited OGD/R-induced neural ferroptosis, and this mechanism of action may involve Tan IIA promoting the downregulation of ACSL4 expression by targeting miR-449a within cells, thereby inhibiting ferroptosis in cells induced by OGD/R. Our research results indicate that Tan IIA relieved CI/RI injury and inflammation by alleviating neuronal ferroptosis, and this regulatory effect may be achieved through the miR-449a/ACSL4 molecular axis.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 6\",\"pages\":\"231\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01660-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01660-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Tanshinone IIA inhibits neuronal ferroptosis and relieves cerebral ischemia‒reperfusion injury by regulating miR-449a/ACSL4.
Cerebral ischemia‒reperfusion injury (CI/RI) plays a significant role in the initiation of ischemic stroke. This study aimed to explore the influence of Tan (tanshinone) IIA in the treatment of neuronal ferroptosis induced by CI/RI, along with the associated molecular mechanisms. A CI/RI model was created by occluding the middle cerebral artery in rats (MCAO/R). A cellular CI/RI model was established with SH-SY5Y cells that were subjected to oxygen‒glucose deprivation followed by subsequent reperfusion (OGD/R). The optimal concentration for maintaining cell viability was evaluated through the CCK-8 assay. The expression levels of ferroptosis and oxidative stress-related genes in rat brain tissue and SH-SY5Y cells were determined, and the molecular mechanism by which Tan IIA regulates ferroptosis during CI/RI treatment was verified by bioinformatics analysis, RT‒qPCR, and dual-luciferase reporter assays. The results revealed that Tan IIA relieved CI/RI injury and inflammation by inhibiting ferroptosis in MCAO/R rat brain neurons. Our experimental results demonstrated that Tan IIA suppressed the progression of OGD/R and alleviated inflammation in SH-SY5Y cells. Ferroptosis affected the concentrations of Fe2+, ROS, and MDA in the CI/RI model while simultaneously increasing the expression of miR-449a. In terms of the molecular mechanism, Tan IIA inhibited OGD/R-induced neural ferroptosis, and this mechanism of action may involve Tan IIA promoting the downregulation of ACSL4 expression by targeting miR-449a within cells, thereby inhibiting ferroptosis in cells induced by OGD/R. Our research results indicate that Tan IIA relieved CI/RI injury and inflammation by alleviating neuronal ferroptosis, and this regulatory effect may be achieved through the miR-449a/ACSL4 molecular axis.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.