TinyFed:用于受限物联网设备的轻量级联邦学习

IF 0.5 Q4 TELECOMMUNICATIONS
Claudio Jr. N. da Silva, Maycon L. M. Peixoto, Gustavo B. Figueiredo, Cassio V. S. Prazeres
{"title":"TinyFed:用于受限物联网设备的轻量级联邦学习","authors":"Claudio Jr. N. da Silva,&nbsp;Maycon L. M. Peixoto,&nbsp;Gustavo B. Figueiredo,&nbsp;Cassio V. S. Prazeres","doi":"10.1002/itl2.70061","DOIUrl":null,"url":null,"abstract":"<p>TinyML enables machine learning inference on microcontrollers with limited resources. Extending this to a collaborative setting led to Tiny Federated Learning (TinyFL). This article presents TinyFed, a lightweight framework that supports the full federated learning cycle—from local training to model aggregation and redistribution. TinyFed was validated on ESP32 devices using a neural network with four inputs, three hidden layers, and two outputs to detect temperature, humidity, luminosity, and voltage anomalies. Local training achieved accuracies of up to 99.47%.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/itl2.70061","citationCount":"0","resultStr":"{\"title\":\"TinyFed: Lightweight Federated Learning for Constrained IoT Devices\",\"authors\":\"Claudio Jr. N. da Silva,&nbsp;Maycon L. M. Peixoto,&nbsp;Gustavo B. Figueiredo,&nbsp;Cassio V. S. Prazeres\",\"doi\":\"10.1002/itl2.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TinyML enables machine learning inference on microcontrollers with limited resources. Extending this to a collaborative setting led to Tiny Federated Learning (TinyFL). This article presents TinyFed, a lightweight framework that supports the full federated learning cycle—from local training to model aggregation and redistribution. TinyFed was validated on ESP32 devices using a neural network with four inputs, three hidden layers, and two outputs to detect temperature, humidity, luminosity, and voltage anomalies. Local training achieved accuracies of up to 99.47%.</p>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/itl2.70061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

TinyML支持在资源有限的微控制器上进行机器学习推理。将此扩展到协作环境中,便产生了Tiny Federated Learning (TinyFL)。本文介绍了TinyFed,它是一个轻量级框架,支持完整的联邦学习周期——从本地训练到模型聚合和再分发。TinyFed在ESP32设备上进行了验证,使用了一个具有4个输入、3个隐藏层和2个输出的神经网络来检测温度、湿度、亮度和电压异常。局部训练的准确率高达99.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TinyFed: Lightweight Federated Learning for Constrained IoT Devices

TinyFed: Lightweight Federated Learning for Constrained IoT Devices

TinyML enables machine learning inference on microcontrollers with limited resources. Extending this to a collaborative setting led to Tiny Federated Learning (TinyFL). This article presents TinyFed, a lightweight framework that supports the full federated learning cycle—from local training to model aggregation and redistribution. TinyFed was validated on ESP32 devices using a neural network with four inputs, three hidden layers, and two outputs to detect temperature, humidity, luminosity, and voltage anomalies. Local training achieved accuracies of up to 99.47%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信