零信任网络和基于联邦学习的6G边缘网络:攻击场景、安全模型和未来方向

IF 0.5 Q4 TELECOMMUNICATIONS
Nishat Mahdiya Khan, Pronaya Bhattacharya, Haipeng Liu, Zhu Zhu, Thippa Reddy Gadekallu
{"title":"零信任网络和基于联邦学习的6G边缘网络:攻击场景、安全模型和未来方向","authors":"Nishat Mahdiya Khan,&nbsp;Pronaya Bhattacharya,&nbsp;Haipeng Liu,&nbsp;Zhu Zhu,&nbsp;Thippa Reddy Gadekallu","doi":"10.1002/itl2.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero Trust Networks and Federated Unlearning Based 6G Edge Networks: Attack Scenario, Security Model and Future Directions\",\"authors\":\"Nishat Mahdiya Khan,&nbsp;Pronaya Bhattacharya,&nbsp;Haipeng Liu,&nbsp;Zhu Zhu,&nbsp;Thippa Reddy Gadekallu\",\"doi\":\"10.1002/itl2.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)和联邦学习(FU)之间的动态相互作用引入了漏洞,特别是恶意攻击者的缓慢中毒攻击场景。攻击继续进行,攻击者可以在连续的更新周期中逐渐降低全局模型性能。在这封信中,我们提出了一个蓝图架构,该架构将零信任网络(ztn)集成到学习(FU)请求和客户端允许(FL)阶段中,以抵消这些威胁。通过执行持续的客户验证和严格的风险评估,我们的愿景确保只有经过验证和可靠的更新才能对全球模型做出贡献,从而保持模型完整性并保护敏感数据。展望了未来的研究方向和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero Trust Networks and Federated Unlearning Based 6G Edge Networks: Attack Scenario, Security Model and Future Directions

The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信