{"title":"零信任网络和基于联邦学习的6G边缘网络:攻击场景、安全模型和未来方向","authors":"Nishat Mahdiya Khan, Pronaya Bhattacharya, Haipeng Liu, Zhu Zhu, Thippa Reddy Gadekallu","doi":"10.1002/itl2.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero Trust Networks and Federated Unlearning Based 6G Edge Networks: Attack Scenario, Security Model and Future Directions\",\"authors\":\"Nishat Mahdiya Khan, Pronaya Bhattacharya, Haipeng Liu, Zhu Zhu, Thippa Reddy Gadekallu\",\"doi\":\"10.1002/itl2.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Zero Trust Networks and Federated Unlearning Based 6G Edge Networks: Attack Scenario, Security Model and Future Directions
The dynamic interplay between federated learning (FL) and federated unlearning (FU) introduces vulnerabilities, particularly the slow poisoning attack scenario by malicious adversaries. The attack proceeds where adversaries can gradually degrade global model performance over successive update cycles. In this letter, we propose a blueprint architecture that integrates zero trust networks (ZTNs) into both the unlearning (FU) request and the client admission (FL) stages to counteract these threats. By enforcing continuous client verification and rigorous risk assessment, our vision ensures that only authenticated and reliable updates contribute to the global model, thereby preserving model integrity and safeguarding sensitive data. Promising future research directions and open challenges are also discussed.