局部泊松点过程空间变参数变化的检测

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-06-23 DOI:10.1002/env.70022
Nicoletta D'Angelo
{"title":"局部泊松点过程空间变参数变化的检测","authors":"Nicoletta D'Angelo","doi":"10.1002/env.70022","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in local models for point processes have highlighted the need for flexible methodologies to account for the spatial heterogeneity of external covariates influencing process intensity. In this work, we introduce <i>tessellated spatial regression</i>, a novel framework that extends segmented regression models to spatial point processes, with the aim of detecting abrupt changes in the effect of external covariates on the process intensity. Our approach consists of two main steps. First, we apply a spatial segmentation algorithm to geographically weighted regression estimates, generating different tessellations that partition the study area into regions where model parameters can be assumed constant. Next, we fit log-linear Poisson models in which covariates interact with the tessellations, enabling region-specific parameter estimation and classical inferential procedures, such as hypothesis testing on regression coefficients. Unlike geographically weighted regression, our approach allows for discrete changes in regression coefficients, making it possible to capture abrupt spatial variations in the effect of real-valued spatial covariates. Furthermore, the method naturally addresses the problem of locating and quantifying the number of detected spatial changes. We validate our methodology through simulation studies and applications to two examples where a model with region-wise parameters seems appropriate and to an environmental dataset of earthquake occurrences in Greece.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70022","citationCount":"0","resultStr":"{\"title\":\"Detecting Changes in Space-Varying Parameters of Local Poisson Point Processes\",\"authors\":\"Nicoletta D'Angelo\",\"doi\":\"10.1002/env.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advances in local models for point processes have highlighted the need for flexible methodologies to account for the spatial heterogeneity of external covariates influencing process intensity. In this work, we introduce <i>tessellated spatial regression</i>, a novel framework that extends segmented regression models to spatial point processes, with the aim of detecting abrupt changes in the effect of external covariates on the process intensity. Our approach consists of two main steps. First, we apply a spatial segmentation algorithm to geographically weighted regression estimates, generating different tessellations that partition the study area into regions where model parameters can be assumed constant. Next, we fit log-linear Poisson models in which covariates interact with the tessellations, enabling region-specific parameter estimation and classical inferential procedures, such as hypothesis testing on regression coefficients. Unlike geographically weighted regression, our approach allows for discrete changes in regression coefficients, making it possible to capture abrupt spatial variations in the effect of real-valued spatial covariates. Furthermore, the method naturally addresses the problem of locating and quantifying the number of detected spatial changes. We validate our methodology through simulation studies and applications to two examples where a model with region-wise parameters seems appropriate and to an environmental dataset of earthquake occurrences in Greece.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.70022\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70022","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

点过程局部模型的最新进展突出表明,需要灵活的方法来解释影响过程强度的外部协变量的空间异质性。在这项工作中,我们引入了细分空间回归,这是一种将分段回归模型扩展到空间点过程的新框架,目的是检测外部协变量对过程强度影响的突变。我们的方法包括两个主要步骤。首先,我们将空间分割算法应用于地理加权回归估计,生成不同的细分,将研究区域划分为模型参数可以假设为常数的区域。接下来,我们拟合对数线性泊松模型,其中协变量与镶嵌相互作用,实现特定区域参数估计和经典推理程序,如回归系数的假设检验。与地理加权回归不同,我们的方法允许回归系数的离散变化,从而有可能捕捉实值空间协变量影响下的突然空间变化。此外,该方法自然地解决了定位和量化检测到的空间变化数量的问题。我们通过模拟研究和两个例子的应用来验证我们的方法,其中具有区域明智参数的模型似乎是合适的,以及希腊地震发生的环境数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detecting Changes in Space-Varying Parameters of Local Poisson Point Processes

Detecting Changes in Space-Varying Parameters of Local Poisson Point Processes

Recent advances in local models for point processes have highlighted the need for flexible methodologies to account for the spatial heterogeneity of external covariates influencing process intensity. In this work, we introduce tessellated spatial regression, a novel framework that extends segmented regression models to spatial point processes, with the aim of detecting abrupt changes in the effect of external covariates on the process intensity. Our approach consists of two main steps. First, we apply a spatial segmentation algorithm to geographically weighted regression estimates, generating different tessellations that partition the study area into regions where model parameters can be assumed constant. Next, we fit log-linear Poisson models in which covariates interact with the tessellations, enabling region-specific parameter estimation and classical inferential procedures, such as hypothesis testing on regression coefficients. Unlike geographically weighted regression, our approach allows for discrete changes in regression coefficients, making it possible to capture abrupt spatial variations in the effect of real-valued spatial covariates. Furthermore, the method naturally addresses the problem of locating and quantifying the number of detected spatial changes. We validate our methodology through simulation studies and applications to two examples where a model with region-wise parameters seems appropriate and to an environmental dataset of earthquake occurrences in Greece.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信