ZnIn2S4纳米片中锌空位和er掺杂的协同工程,通过优化电荷动力学增强CO2光还原

Luotian Lv, Yao Liu, Xuanheng Li, Yankai Huang, Tong Li, Hongwei Jian, Yanan Fan, Haili Song, Han Feng, Yongqing Wang
{"title":"ZnIn2S4纳米片中锌空位和er掺杂的协同工程,通过优化电荷动力学增强CO2光还原","authors":"Luotian Lv,&nbsp;Yao Liu,&nbsp;Xuanheng Li,&nbsp;Yankai Huang,&nbsp;Tong Li,&nbsp;Hongwei Jian,&nbsp;Yanan Fan,&nbsp;Haili Song,&nbsp;Han Feng,&nbsp;Yongqing Wang","doi":"10.1002/cnl2.70021","DOIUrl":null,"url":null,"abstract":"<p>Although extensive research has been conducted on cation vacancies in photocatalysts, the significance of vacancy defects in photocatalytic reactions and deep-going understanding of the intrinsic mechanisms are still limited. Herein, an appropriate introduction of zinc vacancies on ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) is rationally designed through Er or La (Er/La)-doping. Aberration-corrected scanning transmission electron microscopy (STEM) directly demonstrates distinct zinc vacancies (V<sub>Zn</sub>), which is also confirmed by electron spin resonance analysis. The results of experiments and density functional theory (DFT) calculations manifest that Er/La-doping not only promotes the formation of V<sub>Zn</sub> but also enhances the built-in electric field, thus facilitating the rapid transfer of carriers. In addition, femtosecond transient absorption spectroscopy (fs-TAS) reveals that V<sub>Zn</sub> induces a supplementary charge transfer pathway, thereby enhancing charge separation efficiency. As a result, the desired photocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to syngas capacity is finally achieved on Er<sub>0.2</sub>-ZIS, with tunable H<sub>2</sub>/CO ratios, exceeding that of untreated ZIS by over 2 times. This study not only exploits a novel avenue to develop high-activity cation vacancies photocatalysts but also provides new perspectives in regulating the photogenerated carrier dynamics.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70021","citationCount":"0","resultStr":"{\"title\":\"Synergistic Engineering of Zinc Vacancies and Er-Doping in ZnIn2S4 Nanosheets for Enhanced CO2 Photoreduction via Optimized Charge Dynamics\",\"authors\":\"Luotian Lv,&nbsp;Yao Liu,&nbsp;Xuanheng Li,&nbsp;Yankai Huang,&nbsp;Tong Li,&nbsp;Hongwei Jian,&nbsp;Yanan Fan,&nbsp;Haili Song,&nbsp;Han Feng,&nbsp;Yongqing Wang\",\"doi\":\"10.1002/cnl2.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although extensive research has been conducted on cation vacancies in photocatalysts, the significance of vacancy defects in photocatalytic reactions and deep-going understanding of the intrinsic mechanisms are still limited. Herein, an appropriate introduction of zinc vacancies on ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) is rationally designed through Er or La (Er/La)-doping. Aberration-corrected scanning transmission electron microscopy (STEM) directly demonstrates distinct zinc vacancies (V<sub>Zn</sub>), which is also confirmed by electron spin resonance analysis. The results of experiments and density functional theory (DFT) calculations manifest that Er/La-doping not only promotes the formation of V<sub>Zn</sub> but also enhances the built-in electric field, thus facilitating the rapid transfer of carriers. In addition, femtosecond transient absorption spectroscopy (fs-TAS) reveals that V<sub>Zn</sub> induces a supplementary charge transfer pathway, thereby enhancing charge separation efficiency. As a result, the desired photocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to syngas capacity is finally achieved on Er<sub>0.2</sub>-ZIS, with tunable H<sub>2</sub>/CO ratios, exceeding that of untreated ZIS by over 2 times. This study not only exploits a novel avenue to develop high-activity cation vacancies photocatalysts but also provides new perspectives in regulating the photogenerated carrier dynamics.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然对光催化剂中的阳离子空位进行了广泛的研究,但空位缺陷在光催化反应中的意义和对其内在机制的深入认识仍然有限。本文通过Er或La (Er/La)掺杂合理设计ZnIn2S4 (ZIS)上适当引入锌空位。像差校正扫描透射电子显微镜(STEM)直接显示出明显的锌空位(VZn),电子自旋共振分析也证实了这一点。实验结果和密度泛函理论(DFT)计算表明,Er/ la掺杂不仅促进了VZn的形成,而且增强了内建电场,从而促进了载流子的快速转移。此外,飞秒瞬态吸收光谱(fs-TAS)显示,VZn诱导了补充电荷转移途径,从而提高了电荷分离效率。结果,在Er0.2-ZIS上最终实现了所需的光催化CO2还原反应(CO2RR)到合成气容量,H2/CO比可调,超过未处理的ZIS 2倍以上。本研究不仅为开发高活性阳离子空位光催化剂开辟了新途径,而且为调控光生载流子动力学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Engineering of Zinc Vacancies and Er-Doping in ZnIn2S4 Nanosheets for Enhanced CO2 Photoreduction via Optimized Charge Dynamics

Synergistic Engineering of Zinc Vacancies and Er-Doping in ZnIn2S4 Nanosheets for Enhanced CO2 Photoreduction via Optimized Charge Dynamics

Although extensive research has been conducted on cation vacancies in photocatalysts, the significance of vacancy defects in photocatalytic reactions and deep-going understanding of the intrinsic mechanisms are still limited. Herein, an appropriate introduction of zinc vacancies on ZnIn2S4 (ZIS) is rationally designed through Er or La (Er/La)-doping. Aberration-corrected scanning transmission electron microscopy (STEM) directly demonstrates distinct zinc vacancies (VZn), which is also confirmed by electron spin resonance analysis. The results of experiments and density functional theory (DFT) calculations manifest that Er/La-doping not only promotes the formation of VZn but also enhances the built-in electric field, thus facilitating the rapid transfer of carriers. In addition, femtosecond transient absorption spectroscopy (fs-TAS) reveals that VZn induces a supplementary charge transfer pathway, thereby enhancing charge separation efficiency. As a result, the desired photocatalytic CO2 reduction reaction (CO2RR) to syngas capacity is finally achieved on Er0.2-ZIS, with tunable H2/CO ratios, exceeding that of untreated ZIS by over 2 times. This study not only exploits a novel avenue to develop high-activity cation vacancies photocatalysts but also provides new perspectives in regulating the photogenerated carrier dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信