建筑能源系统的分布式非线性模型预测控制:一种ALADIN实现研究

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Steffen Eser, Ben Spoek, Augustinus Schütz, Phillip Stoffel, Dirk Müller
{"title":"建筑能源系统的分布式非线性模型预测控制:一种ALADIN实现研究","authors":"Steffen Eser,&nbsp;Ben Spoek,&nbsp;Augustinus Schütz,&nbsp;Phillip Stoffel,&nbsp;Dirk Müller","doi":"10.1016/j.egyai.2025.100536","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of sophisticated control strategies for building energy systems is crucial for improving energy efficiency and occupant comfort. While nonlinear model predictive control offers promising benefits, its application to large-scale building systems remains challenging due to computational complexity and system coupling. This work presents a comprehensive study of Nonlinear Distributed Model Predictive Control (NDMPC) implementation for building energy systems, comparing Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithms alongside different modeling approaches. We examine a multi-zone heating system with thermal storage and multiple producers, investigating both Ordinary Differential Equation (ODE)-based and Artificial Neural Network (ANN) based modeling strategies. Through systematic parameter tuning using Bayesian optimization and closed-loop scaling analysis with up to 40 thermal zones, we demonstrate that ALADIN-based NDMPC can achieve performance comparable to centralized model predictive control, showing greater robustness to parameter variations than ADMM. Our results reveal that ANN-based models effectively mitigate distributed integration errors and significantly reduce computation time compared to ODE-based approaches. Detailed computational profiling identifies specific bottlenecks in different NDMPC components. These findings advance the practical implementation of NDMPC in building energy systems, offering concrete strategies for modeling choices, parameter tuning, and system architecture design.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100536"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed nonlinear model predictive control for building energy systems: An ALADIN implementation study\",\"authors\":\"Steffen Eser,&nbsp;Ben Spoek,&nbsp;Augustinus Schütz,&nbsp;Phillip Stoffel,&nbsp;Dirk Müller\",\"doi\":\"10.1016/j.egyai.2025.100536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The implementation of sophisticated control strategies for building energy systems is crucial for improving energy efficiency and occupant comfort. While nonlinear model predictive control offers promising benefits, its application to large-scale building systems remains challenging due to computational complexity and system coupling. This work presents a comprehensive study of Nonlinear Distributed Model Predictive Control (NDMPC) implementation for building energy systems, comparing Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithms alongside different modeling approaches. We examine a multi-zone heating system with thermal storage and multiple producers, investigating both Ordinary Differential Equation (ODE)-based and Artificial Neural Network (ANN) based modeling strategies. Through systematic parameter tuning using Bayesian optimization and closed-loop scaling analysis with up to 40 thermal zones, we demonstrate that ALADIN-based NDMPC can achieve performance comparable to centralized model predictive control, showing greater robustness to parameter variations than ADMM. Our results reveal that ANN-based models effectively mitigate distributed integration errors and significantly reduce computation time compared to ODE-based approaches. Detailed computational profiling identifies specific bottlenecks in different NDMPC components. These findings advance the practical implementation of NDMPC in building energy systems, offering concrete strategies for modeling choices, parameter tuning, and system architecture design.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"21 \",\"pages\":\"Article 100536\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

实施复杂的建筑能源系统控制策略对于提高能源效率和居住者舒适度至关重要。虽然非线性模型预测控制具有很好的优势,但由于计算复杂性和系统耦合性,其在大型建筑系统中的应用仍然具有挑战性。本研究对建筑能源系统的非线性分布式模型预测控制(NDMPC)实施进行了全面研究,比较了乘法器交替方向法(ADMM)和增广拉格朗日交替方向不精确牛顿(ALADIN)算法以及不同的建模方法。我们研究了一个具有储热和多个生产者的多区域供热系统,研究了基于常微分方程(ODE)和基于人工神经网络(ANN)的建模策略。通过使用贝叶斯优化和多达40个热区的闭环尺度分析进行系统参数调整,我们证明了基于aladin的NDMPC可以实现与集中模型预测控制相当的性能,对参数变化的鲁棒性优于ADMM。我们的研究结果表明,与基于ode的方法相比,基于人工神经网络的模型有效地减轻了分布式集成错误,并显着减少了计算时间。详细的计算分析确定了不同NDMPC组件中的特定瓶颈。这些发现促进了NDMPC在建筑能源系统中的实际实施,为建模选择、参数调整和系统架构设计提供了具体的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed nonlinear model predictive control for building energy systems: An ALADIN implementation study

Distributed nonlinear model predictive control for building energy systems: An ALADIN implementation study
The implementation of sophisticated control strategies for building energy systems is crucial for improving energy efficiency and occupant comfort. While nonlinear model predictive control offers promising benefits, its application to large-scale building systems remains challenging due to computational complexity and system coupling. This work presents a comprehensive study of Nonlinear Distributed Model Predictive Control (NDMPC) implementation for building energy systems, comparing Alternating Direction Method of Multipliers (ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithms alongside different modeling approaches. We examine a multi-zone heating system with thermal storage and multiple producers, investigating both Ordinary Differential Equation (ODE)-based and Artificial Neural Network (ANN) based modeling strategies. Through systematic parameter tuning using Bayesian optimization and closed-loop scaling analysis with up to 40 thermal zones, we demonstrate that ALADIN-based NDMPC can achieve performance comparable to centralized model predictive control, showing greater robustness to parameter variations than ADMM. Our results reveal that ANN-based models effectively mitigate distributed integration errors and significantly reduce computation time compared to ODE-based approaches. Detailed computational profiling identifies specific bottlenecks in different NDMPC components. These findings advance the practical implementation of NDMPC in building energy systems, offering concrete strategies for modeling choices, parameter tuning, and system architecture design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信