Mingshuang Wang , Liwei Pang , Yingjie Sun , Jingjing Han , Jiani Fan , Wenhui Shen , Xiaonan Hu , Bingqian Yang , Haoming Ning , Yanan Kong , Duo Li , Wenshan Zhao , Ranran Shi , Ling Ran , Yuanming Qi , Yahong Wu
{"title":"内分泌治疗抵抗性乳腺癌免疫治疗hla - a2限制性新表位的筛选和鉴定","authors":"Mingshuang Wang , Liwei Pang , Yingjie Sun , Jingjing Han , Jiani Fan , Wenhui Shen , Xiaonan Hu , Bingqian Yang , Haoming Ning , Yanan Kong , Duo Li , Wenshan Zhao , Ranran Shi , Ling Ran , Yuanming Qi , Yahong Wu","doi":"10.1016/j.neo.2025.101200","DOIUrl":null,"url":null,"abstract":"<div><div>Endocrine therapy has shown significant clinical efficacy in estrogen receptor alpha (ERα)-positive breast cancer management, but the emergence of therapy-resistant mutations significantly undermines treatment outcomes, frequently leading to disease progression and metastasis. Among these resistance mechanisms, mutations in the ESR1 gene are particularly prevalent, detectable in 76% of endocrine therapy-resistant tumor specimens. The identification of immunogenic neoepitopes derived from mutant ESR1 offers a promising therapeutic avenue for patients with endocrine therapy-resistant breast cancer. In this study, we systematically investigated the mutational landscape of ESR1 across various cancer types, with particular emphasis on mutation frequency and spectrum analysis. Our findings revealed that non-synonymous ESR1 mutations predominantly occurred in breast cancer, clustering at four distinct hotspot sites: K303, E380, Y537 and D538. We further characterized the mutation prevalence at these hotspots across different breast cancer subtypes. Through comprehensive screening, we identified eight human leukocyte antigen (HLA)-A*0201 restricted immunogenic neoepitopes derived from ESR1 hotspot mutations. These neoepitopes demonstrated the capacity to elicit specific cytotoxic T lymphocytes (CTLs) responses both <em>in vitro</em> and <em>in vivo</em>. The induced CTLs exhibited specific recognition and cytotoxic activity against both T2A2 cells loaded with mutant neoepitopes and HLA-A*0201-positive breast cancer cells transfected with minigene encoding mutant neoepitopes. Notably, adoptive transfer of T cells primed with a peptide pool containing these eight neoepitopes significantly suppressed tumor growth and enhanced CD8<sup>+</sup> T cells infiltration within tumor tissue. These findings suggest that the identified neoepitopes represent promising candidates for the development of tumor shared neoantigen vaccines.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"67 ","pages":"Article 101200"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy in endocrine therapy-resistant breast cancer\",\"authors\":\"Mingshuang Wang , Liwei Pang , Yingjie Sun , Jingjing Han , Jiani Fan , Wenhui Shen , Xiaonan Hu , Bingqian Yang , Haoming Ning , Yanan Kong , Duo Li , Wenshan Zhao , Ranran Shi , Ling Ran , Yuanming Qi , Yahong Wu\",\"doi\":\"10.1016/j.neo.2025.101200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endocrine therapy has shown significant clinical efficacy in estrogen receptor alpha (ERα)-positive breast cancer management, but the emergence of therapy-resistant mutations significantly undermines treatment outcomes, frequently leading to disease progression and metastasis. Among these resistance mechanisms, mutations in the ESR1 gene are particularly prevalent, detectable in 76% of endocrine therapy-resistant tumor specimens. The identification of immunogenic neoepitopes derived from mutant ESR1 offers a promising therapeutic avenue for patients with endocrine therapy-resistant breast cancer. In this study, we systematically investigated the mutational landscape of ESR1 across various cancer types, with particular emphasis on mutation frequency and spectrum analysis. Our findings revealed that non-synonymous ESR1 mutations predominantly occurred in breast cancer, clustering at four distinct hotspot sites: K303, E380, Y537 and D538. We further characterized the mutation prevalence at these hotspots across different breast cancer subtypes. Through comprehensive screening, we identified eight human leukocyte antigen (HLA)-A*0201 restricted immunogenic neoepitopes derived from ESR1 hotspot mutations. These neoepitopes demonstrated the capacity to elicit specific cytotoxic T lymphocytes (CTLs) responses both <em>in vitro</em> and <em>in vivo</em>. The induced CTLs exhibited specific recognition and cytotoxic activity against both T2A2 cells loaded with mutant neoepitopes and HLA-A*0201-positive breast cancer cells transfected with minigene encoding mutant neoepitopes. Notably, adoptive transfer of T cells primed with a peptide pool containing these eight neoepitopes significantly suppressed tumor growth and enhanced CD8<sup>+</sup> T cells infiltration within tumor tissue. These findings suggest that the identified neoepitopes represent promising candidates for the development of tumor shared neoantigen vaccines.</div></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"67 \",\"pages\":\"Article 101200\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558625000806\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000806","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy in endocrine therapy-resistant breast cancer
Endocrine therapy has shown significant clinical efficacy in estrogen receptor alpha (ERα)-positive breast cancer management, but the emergence of therapy-resistant mutations significantly undermines treatment outcomes, frequently leading to disease progression and metastasis. Among these resistance mechanisms, mutations in the ESR1 gene are particularly prevalent, detectable in 76% of endocrine therapy-resistant tumor specimens. The identification of immunogenic neoepitopes derived from mutant ESR1 offers a promising therapeutic avenue for patients with endocrine therapy-resistant breast cancer. In this study, we systematically investigated the mutational landscape of ESR1 across various cancer types, with particular emphasis on mutation frequency and spectrum analysis. Our findings revealed that non-synonymous ESR1 mutations predominantly occurred in breast cancer, clustering at four distinct hotspot sites: K303, E380, Y537 and D538. We further characterized the mutation prevalence at these hotspots across different breast cancer subtypes. Through comprehensive screening, we identified eight human leukocyte antigen (HLA)-A*0201 restricted immunogenic neoepitopes derived from ESR1 hotspot mutations. These neoepitopes demonstrated the capacity to elicit specific cytotoxic T lymphocytes (CTLs) responses both in vitro and in vivo. The induced CTLs exhibited specific recognition and cytotoxic activity against both T2A2 cells loaded with mutant neoepitopes and HLA-A*0201-positive breast cancer cells transfected with minigene encoding mutant neoepitopes. Notably, adoptive transfer of T cells primed with a peptide pool containing these eight neoepitopes significantly suppressed tumor growth and enhanced CD8+ T cells infiltration within tumor tissue. These findings suggest that the identified neoepitopes represent promising candidates for the development of tumor shared neoantigen vaccines.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.