一类非线性工程问题的高阶分数阶并行迭代方法:收敛性、稳定性和基于神经网络的加速

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mudassir Shams , Nasreen Kausar , Bruno Carpentieri
{"title":"一类非线性工程问题的高阶分数阶并行迭代方法:收敛性、稳定性和基于神经网络的加速","authors":"Mudassir Shams ,&nbsp;Nasreen Kausar ,&nbsp;Bruno Carpentieri","doi":"10.1016/j.chaos.2025.116646","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional analytical techniques often fail to yield efficient or closed-form solutions for nonlinear fractional problems due to their inherent nonlocality and complexity. This study introduces a new class of high-order parallel iterative methods for solving nonlinear equations, with a focus on fractional-order formulations. We first develop a sixth-order single-root finding scheme, which is then extended to a fractional-order method with convergence order <span><math><mrow><mn>5</mn><mi>σ</mi><mo>+</mo><mn>1</mn></mrow></math></span>, and further generalized into a parallel scheme achieving order <span><math><mrow><mn>20</mn><mi>σ</mi><mo>+</mo><mn>8</mn></mrow></math></span>. To improve computational performance, we propose a hybrid neural network-based parallel scheme, in which optimal parameter values are identified through dynamical systems analysis. The resulting methods exhibit strong stability, accuracy, and efficiency, and are robust with respect to both accurate and perturbed initial approximations. Comparative experiments on real-world engineering problems demonstrate that the proposed fractional parallel schemes consistently outperform existing methods in terms of residual error, convergence rate, and computational cost.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116646"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of high-order fractional parallel iterative methods for nonlinear engineering problems: Convergence, stability, and neural network-based acceleration\",\"authors\":\"Mudassir Shams ,&nbsp;Nasreen Kausar ,&nbsp;Bruno Carpentieri\",\"doi\":\"10.1016/j.chaos.2025.116646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional analytical techniques often fail to yield efficient or closed-form solutions for nonlinear fractional problems due to their inherent nonlocality and complexity. This study introduces a new class of high-order parallel iterative methods for solving nonlinear equations, with a focus on fractional-order formulations. We first develop a sixth-order single-root finding scheme, which is then extended to a fractional-order method with convergence order <span><math><mrow><mn>5</mn><mi>σ</mi><mo>+</mo><mn>1</mn></mrow></math></span>, and further generalized into a parallel scheme achieving order <span><math><mrow><mn>20</mn><mi>σ</mi><mo>+</mo><mn>8</mn></mrow></math></span>. To improve computational performance, we propose a hybrid neural network-based parallel scheme, in which optimal parameter values are identified through dynamical systems analysis. The resulting methods exhibit strong stability, accuracy, and efficiency, and are robust with respect to both accurate and perturbed initial approximations. Comparative experiments on real-world engineering problems demonstrate that the proposed fractional parallel schemes consistently outperform existing methods in terms of residual error, convergence rate, and computational cost.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116646\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925006599\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006599","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于非线性分式问题固有的非局域性和复杂性,传统的解析技术往往不能得到有效的或封闭的解。本文介绍了一类新的求解非线性方程的高阶并行迭代方法,重点讨论了分数阶公式。首先提出了一个六阶单根查找格式,然后将其推广为收敛阶为5σ+1的分数阶方法,并进一步推广为收敛阶为20σ+8的并行格式。为了提高计算性能,我们提出了一种基于混合神经网络的并行方案,其中通过动态系统分析确定最优参数值。所得到的方法具有很强的稳定性、准确性和效率,并且对于精确和扰动初始近似都具有鲁棒性。在实际工程问题上的对比实验表明,所提出的分数并行方案在残差、收敛速度和计算成本方面始终优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of high-order fractional parallel iterative methods for nonlinear engineering problems: Convergence, stability, and neural network-based acceleration
Conventional analytical techniques often fail to yield efficient or closed-form solutions for nonlinear fractional problems due to their inherent nonlocality and complexity. This study introduces a new class of high-order parallel iterative methods for solving nonlinear equations, with a focus on fractional-order formulations. We first develop a sixth-order single-root finding scheme, which is then extended to a fractional-order method with convergence order 5σ+1, and further generalized into a parallel scheme achieving order 20σ+8. To improve computational performance, we propose a hybrid neural network-based parallel scheme, in which optimal parameter values are identified through dynamical systems analysis. The resulting methods exhibit strong stability, accuracy, and efficiency, and are robust with respect to both accurate and perturbed initial approximations. Comparative experiments on real-world engineering problems demonstrate that the proposed fractional parallel schemes consistently outperform existing methods in terms of residual error, convergence rate, and computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信