基于晶格畸变的多主元素合金化学短程序的加速预测

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qianqian Song , Bozhao Zhang , Kaihui Xun , Evan Ma , Jun Ding
{"title":"基于晶格畸变的多主元素合金化学短程序的加速预测","authors":"Qianqian Song ,&nbsp;Bozhao Zhang ,&nbsp;Kaihui Xun ,&nbsp;Evan Ma ,&nbsp;Jun Ding","doi":"10.1016/j.scriptamat.2025.116828","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical short-range order (CSRO) in multi-principal element alloys (MPEAs) critically influences their microstructural and various properties. Conventional density functional theory (DFT)-based Monte Carlo (MC) simulations, though accurate, are computationally expensive and limited to small-scale systems. This study introduces a novel local-lattice-distortion (LLD)-based MC framework as a computationally efficient alternative for predicting CSRO. By replacing energy-based acceptance criteria with LLD reduction as the metric for atomic swaps, our method achieves computational speeds over two orders of magnitude faster than DFT-based methods while maintaining accuracy. Validated on six representative face-centered cubic and body-centered cubic MPEAs, the framework reveals a strong correlation between LLD and CSRO. Its scalability enables applications in large-scale simulations and high-throughput studies, providing actionable insights into the LLD-CSRO relationship. This methodology offers a transformative tool for advancing the design and optimization of MPEAs with tailored properties.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"267 ","pages":"Article 116828"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated prediction of chemical short-range order via lattice distortion in multi-principal element alloys\",\"authors\":\"Qianqian Song ,&nbsp;Bozhao Zhang ,&nbsp;Kaihui Xun ,&nbsp;Evan Ma ,&nbsp;Jun Ding\",\"doi\":\"10.1016/j.scriptamat.2025.116828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The chemical short-range order (CSRO) in multi-principal element alloys (MPEAs) critically influences their microstructural and various properties. Conventional density functional theory (DFT)-based Monte Carlo (MC) simulations, though accurate, are computationally expensive and limited to small-scale systems. This study introduces a novel local-lattice-distortion (LLD)-based MC framework as a computationally efficient alternative for predicting CSRO. By replacing energy-based acceptance criteria with LLD reduction as the metric for atomic swaps, our method achieves computational speeds over two orders of magnitude faster than DFT-based methods while maintaining accuracy. Validated on six representative face-centered cubic and body-centered cubic MPEAs, the framework reveals a strong correlation between LLD and CSRO. Its scalability enables applications in large-scale simulations and high-throughput studies, providing actionable insights into the LLD-CSRO relationship. This methodology offers a transformative tool for advancing the design and optimization of MPEAs with tailored properties.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"267 \",\"pages\":\"Article 116828\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135964622500291X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964622500291X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多主元素合金(MPEAs)中的化学短程有序(CSRO)对其显微组织和各种性能有重要影响。传统的基于密度泛函理论(DFT)的蒙特卡罗(MC)模拟虽然准确,但计算成本高且仅限于小规模系统。本研究引入了一种新的基于局域晶格畸变(LLD)的MC框架,作为预测CSRO的计算效率替代方案。通过将基于能量的接受标准替换为LLD减少作为原子交换的度量,我们的方法在保持准确性的同时,实现了比基于dft的方法快两个数量级的计算速度。通过对六个具有代表性的面心立方和体心立方mpea的验证,该框架揭示了LLD与CSRO之间的强相关性。其可扩展性可用于大规模模拟和高通量研究,为LLD-CSRO关系提供可操作的见解。这种方法提供了一种变革性的工具,用于推进具有定制属性的mpea的设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated prediction of chemical short-range order via lattice distortion in multi-principal element alloys
The chemical short-range order (CSRO) in multi-principal element alloys (MPEAs) critically influences their microstructural and various properties. Conventional density functional theory (DFT)-based Monte Carlo (MC) simulations, though accurate, are computationally expensive and limited to small-scale systems. This study introduces a novel local-lattice-distortion (LLD)-based MC framework as a computationally efficient alternative for predicting CSRO. By replacing energy-based acceptance criteria with LLD reduction as the metric for atomic swaps, our method achieves computational speeds over two orders of magnitude faster than DFT-based methods while maintaining accuracy. Validated on six representative face-centered cubic and body-centered cubic MPEAs, the framework reveals a strong correlation between LLD and CSRO. Its scalability enables applications in large-scale simulations and high-throughput studies, providing actionable insights into the LLD-CSRO relationship. This methodology offers a transformative tool for advancing the design and optimization of MPEAs with tailored properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信