NiS-CdS中的炔基碳点:增强光电催化析氢的独特电子电流分配功能

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiehua Bao*, Weikai Zhou, Fengxin Shao, Zewu Zhang*, Xiaohai Bu, Chao Zhang*, Wenqi Liu and Xueyuan Tang, 
{"title":"NiS-CdS中的炔基碳点:增强光电催化析氢的独特电子电流分配功能","authors":"Jiehua Bao*,&nbsp;Weikai Zhou,&nbsp;Fengxin Shao,&nbsp;Zewu Zhang*,&nbsp;Xiaohai Bu,&nbsp;Chao Zhang*,&nbsp;Wenqi Liu and Xueyuan Tang,&nbsp;","doi":"10.1021/acsaem.5c0121010.1021/acsaem.5c01210","DOIUrl":null,"url":null,"abstract":"<p >Solar-driven photoelectrocatalytic hydrogen evolution holds great promise for sustainable hydrogen production, yet its efficiency is constrained by rapid charge recombination and limited light utilization. Herein, we successfully synthesized a coral-like NiS-CdS-CDs ternary catalyst, which integrates p–n heterojunction engineering with alkynyl-rich carbon dots (CDs). The alkynyl CDs serve dual roles as photosensitizers and electron reservoirs, significantly enhancing the light absorption and interfacial charge transfer. Coupled with the p–n heterojunction formed between NiS (p-type) and CdS (n-type), the as-prepared coral-like NiS-CdS-CDs achieve efficient carrier separation and directional electron flow. The coral-like NiS-CdS-CDs ternary catalyst manifests excellent photoelectrocatalytic hydrogen evolution performance in alkaline solution with an overpotential of 170 mV at a current density of 10 mA cm<sup>–2</sup>, a Tafel slope of 65 mV dec<sup>–1</sup>, and significant long-term durability. Density functional theory (DFT) calculations reveal that alkynyl CDs elongate the O–H bond lengths and lower the energy barrier for water activation by facilitating electron redistribution. Furthermore, the coral-like microstructure ensures high dispersion and exposes abundant active sites, addressing aggregation issues common in carbon-based cocatalysts. This work not only establishes a strategy for synergizing semiconductor heterojunctions with functionalized carbon materials but also provides mechanistic insights into electron storage-donor dynamics.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 12","pages":"8561–8570 8561–8570"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkynyl Carbon Dots in NiS-CdS: The Unique Electron Current Division Function for Enhanced Photoelectrocatalytic Hydrogen Evolution\",\"authors\":\"Jiehua Bao*,&nbsp;Weikai Zhou,&nbsp;Fengxin Shao,&nbsp;Zewu Zhang*,&nbsp;Xiaohai Bu,&nbsp;Chao Zhang*,&nbsp;Wenqi Liu and Xueyuan Tang,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0121010.1021/acsaem.5c01210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solar-driven photoelectrocatalytic hydrogen evolution holds great promise for sustainable hydrogen production, yet its efficiency is constrained by rapid charge recombination and limited light utilization. Herein, we successfully synthesized a coral-like NiS-CdS-CDs ternary catalyst, which integrates p–n heterojunction engineering with alkynyl-rich carbon dots (CDs). The alkynyl CDs serve dual roles as photosensitizers and electron reservoirs, significantly enhancing the light absorption and interfacial charge transfer. Coupled with the p–n heterojunction formed between NiS (p-type) and CdS (n-type), the as-prepared coral-like NiS-CdS-CDs achieve efficient carrier separation and directional electron flow. The coral-like NiS-CdS-CDs ternary catalyst manifests excellent photoelectrocatalytic hydrogen evolution performance in alkaline solution with an overpotential of 170 mV at a current density of 10 mA cm<sup>–2</sup>, a Tafel slope of 65 mV dec<sup>–1</sup>, and significant long-term durability. Density functional theory (DFT) calculations reveal that alkynyl CDs elongate the O–H bond lengths and lower the energy barrier for water activation by facilitating electron redistribution. Furthermore, the coral-like microstructure ensures high dispersion and exposes abundant active sites, addressing aggregation issues common in carbon-based cocatalysts. This work not only establishes a strategy for synergizing semiconductor heterojunctions with functionalized carbon materials but also provides mechanistic insights into electron storage-donor dynamics.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 12\",\"pages\":\"8561–8570 8561–8570\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01210\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01210","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的光电催化析氢对可持续制氢具有很大的希望,但其效率受到快速电荷重组和有限的光利用的限制。本文成功合成了一种将p-n异质结工程与富烷基碳点(CDs)相结合的类珊瑚型NiS-CdS-CDs三元催化剂。炔基CDs具有光敏剂和电子储层的双重作用,显著增强了材料的光吸收和界面电荷转移。再加上NiS (p型)和CdS (n型)之间形成的p-n异质结,制备的类珊瑚NiS-CdS- CdS实现了高效的载流子分离和定向电子流动。珊瑚状NiS-CdS-CDs三元催化剂在碱性溶液中表现出优异的光电催化析氢性能,在电流密度为10 mA cm-2时过电位为170 mV,塔菲尔斜率为65 mV dec1,并且具有显著的长期耐久性。密度泛函理论(DFT)计算表明,炔基CDs通过促进电子再分配,延长了O-H键的长度,降低了水活化的能垒。此外,珊瑚状的微观结构确保了高分散性,并暴露了丰富的活性位点,解决了碳基共催化剂中常见的聚集问题。这项工作不仅建立了半导体异质结与功能化碳材料协同作用的策略,而且为电子存储-供体动力学提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alkynyl Carbon Dots in NiS-CdS: The Unique Electron Current Division Function for Enhanced Photoelectrocatalytic Hydrogen Evolution

Alkynyl Carbon Dots in NiS-CdS: The Unique Electron Current Division Function for Enhanced Photoelectrocatalytic Hydrogen Evolution

Solar-driven photoelectrocatalytic hydrogen evolution holds great promise for sustainable hydrogen production, yet its efficiency is constrained by rapid charge recombination and limited light utilization. Herein, we successfully synthesized a coral-like NiS-CdS-CDs ternary catalyst, which integrates p–n heterojunction engineering with alkynyl-rich carbon dots (CDs). The alkynyl CDs serve dual roles as photosensitizers and electron reservoirs, significantly enhancing the light absorption and interfacial charge transfer. Coupled with the p–n heterojunction formed between NiS (p-type) and CdS (n-type), the as-prepared coral-like NiS-CdS-CDs achieve efficient carrier separation and directional electron flow. The coral-like NiS-CdS-CDs ternary catalyst manifests excellent photoelectrocatalytic hydrogen evolution performance in alkaline solution with an overpotential of 170 mV at a current density of 10 mA cm–2, a Tafel slope of 65 mV dec–1, and significant long-term durability. Density functional theory (DFT) calculations reveal that alkynyl CDs elongate the O–H bond lengths and lower the energy barrier for water activation by facilitating electron redistribution. Furthermore, the coral-like microstructure ensures high dispersion and exposes abundant active sites, addressing aggregation issues common in carbon-based cocatalysts. This work not only establishes a strategy for synergizing semiconductor heterojunctions with functionalized carbon materials but also provides mechanistic insights into electron storage-donor dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信