CsPbI3纳米棒添加剂工程:提高混合阳离子CsMAFAPbI3钙钛矿太阳能电池的效率和稳定性

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Seema Mourya, Thangaraji Vasudevan, Subaharini Ramalingam, Shailendra Kumar Sharma* and Lung-Chien Chen*, 
{"title":"CsPbI3纳米棒添加剂工程:提高混合阳离子CsMAFAPbI3钙钛矿太阳能电池的效率和稳定性","authors":"Seema Mourya,&nbsp;Thangaraji Vasudevan,&nbsp;Subaharini Ramalingam,&nbsp;Shailendra Kumar Sharma* and Lung-Chien Chen*,&nbsp;","doi":"10.1021/acsaem.5c0135910.1021/acsaem.5c01359","DOIUrl":null,"url":null,"abstract":"<p >In this work, we incorporate CsPbI<sub>3</sub> nanorods into a triple-cation mixed perovskite matrix (Cs<sub>0.1</sub>MA<sub>0.1</sub>FA<sub>0.8</sub>PbI<sub>3</sub>). The CsPbI<sub>3</sub> nanorod additive serves as nucleation centers, regulating the crystallization process and promoting the growth of larger perovskite domains with fewer grain boundaries, without altering the bandgap. Consequently, the resulting perovskite films exhibit improved crystallinity, reduced trap-state density, and suppressed nonradiative recombination, thereby facilitating enhanced charge extraction. The optimized device achieves a power conversion efficiency (PCE) of 21.13%, compared to 18.01% for the control device, primarily attributed to enhancements in the fill factor (FF) and open-circuit voltage (<i>V</i><sub>oc</sub>). Furthermore, the incorporation of nanorods enhances the hydrophobicity and moisture resistance of the perovskite films, enabling the device to retain 87% of its initial efficiency after 384 h under an inert atmosphere. This study underscores nanorod-based additive engineering as a promising strategy for simultaneously improving the efficiency and environmental stability of perovskite solar cells.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 12","pages":"8598–8608 8598–8608"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.5c01359","citationCount":"0","resultStr":"{\"title\":\"CsPbI3 Nanorod Additive Engineering: Enhancing Efficiency and Stability in Mixed-Cation CsMAFAPbI3 Perovskite Solar Cells\",\"authors\":\"Seema Mourya,&nbsp;Thangaraji Vasudevan,&nbsp;Subaharini Ramalingam,&nbsp;Shailendra Kumar Sharma* and Lung-Chien Chen*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0135910.1021/acsaem.5c01359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, we incorporate CsPbI<sub>3</sub> nanorods into a triple-cation mixed perovskite matrix (Cs<sub>0.1</sub>MA<sub>0.1</sub>FA<sub>0.8</sub>PbI<sub>3</sub>). The CsPbI<sub>3</sub> nanorod additive serves as nucleation centers, regulating the crystallization process and promoting the growth of larger perovskite domains with fewer grain boundaries, without altering the bandgap. Consequently, the resulting perovskite films exhibit improved crystallinity, reduced trap-state density, and suppressed nonradiative recombination, thereby facilitating enhanced charge extraction. The optimized device achieves a power conversion efficiency (PCE) of 21.13%, compared to 18.01% for the control device, primarily attributed to enhancements in the fill factor (FF) and open-circuit voltage (<i>V</i><sub>oc</sub>). Furthermore, the incorporation of nanorods enhances the hydrophobicity and moisture resistance of the perovskite films, enabling the device to retain 87% of its initial efficiency after 384 h under an inert atmosphere. This study underscores nanorod-based additive engineering as a promising strategy for simultaneously improving the efficiency and environmental stability of perovskite solar cells.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 12\",\"pages\":\"8598–8608 8598–8608\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.5c01359\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01359\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01359","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将CsPbI3纳米棒加入到三阳离子混合钙钛矿基质(Cs0.1MA0.1FA0.8PbI3)中。CsPbI3纳米棒添加剂作为成核中心,在不改变带隙的情况下,调节结晶过程,促进更大、更小晶界的钙钛矿畴的生长。因此,得到的钙钛矿薄膜表现出更好的结晶度,降低了陷阱态密度,抑制了非辐射重组,从而促进了电荷的提取。与控制器件的18.01%相比,优化后的器件实现了21.13%的功率转换效率(PCE),这主要归功于填充因子(FF)和开路电压(Voc)的增强。此外,纳米棒的掺入增强了钙钛矿膜的疏水性和防潮性,使器件在惰性气氛下放置384 h后仍能保持87%的初始效率。这项研究强调了纳米棒添加剂工程是同时提高钙钛矿太阳能电池效率和环境稳定性的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CsPbI3 Nanorod Additive Engineering: Enhancing Efficiency and Stability in Mixed-Cation CsMAFAPbI3 Perovskite Solar Cells

In this work, we incorporate CsPbI3 nanorods into a triple-cation mixed perovskite matrix (Cs0.1MA0.1FA0.8PbI3). The CsPbI3 nanorod additive serves as nucleation centers, regulating the crystallization process and promoting the growth of larger perovskite domains with fewer grain boundaries, without altering the bandgap. Consequently, the resulting perovskite films exhibit improved crystallinity, reduced trap-state density, and suppressed nonradiative recombination, thereby facilitating enhanced charge extraction. The optimized device achieves a power conversion efficiency (PCE) of 21.13%, compared to 18.01% for the control device, primarily attributed to enhancements in the fill factor (FF) and open-circuit voltage (Voc). Furthermore, the incorporation of nanorods enhances the hydrophobicity and moisture resistance of the perovskite films, enabling the device to retain 87% of its initial efficiency after 384 h under an inert atmosphere. This study underscores nanorod-based additive engineering as a promising strategy for simultaneously improving the efficiency and environmental stability of perovskite solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信