Jinhui Kang , Feilong Song , Xin Chen , Yun Wu , Dengcheng Zhang , Jiaojiao Wang , Zhao Yang , Wuyi Pan , Zhixin Wang
{"title":"联合喷射方案提高旋转爆轰加力燃烧室性能","authors":"Jinhui Kang , Feilong Song , Xin Chen , Yun Wu , Dengcheng Zhang , Jiaojiao Wang , Zhao Yang , Wuyi Pan , Zhixin Wang","doi":"10.1016/j.actaastro.2025.06.034","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a combined injection scheme to address the suboptimal fuel-oxidizer mixing efficiency in wide-throat configurations of rotating detonation afterburner (RDAB). Through comparative analysis of detonation wave propagation characteristics, combustor performance metrics, and matching stability parameters between wall injection and combined injection schemes, we demonstrate the operational advantages of implementing the combined injection strategy in RDAB system. The propagation characteristics of the detonation wave, the performance of the combustor, and the stability parameters of the component's coordinated operation were compared under the wall injection and the combined injection schemes. Key findings demonstrate that the combined injection approach successfully extends the fuel-lean limit of RDAB. However, this extension effect diminishes with decreasing nozzle exit area ratio. At A<sub>8</sub>/A<sub>3.1</sub> = 1.545, the fuel-lean limit improves from 0.84 to 0.73. Under higher nozzle exit area ratios, combined injection enhances detonation wave velocity, propagation stability, and wave strength. When the nozzle exit area ratio is relatively high, the use of a combined injection scheme can increase the detonation wave propagation speed, propagation stability, and detonation wave intensity, among which the increase in detonation wave intensity is the most significant, with the maximum increase in detonation wave intensity reaching 180 %. Regarding performance parameters, while the intensified detonation wave improve pressure gain capability, they simultaneously amplify upstream pulsating pressure feedback intensity. Due to the absence of an effective pulsating pressure feedback suppression structure, the intake loss of the combustor increases, resulting in a slightly lower total pressure recovery coefficient for the combined injection scheme compared to the wall injection scheme. In terms of system matching stability, enhanced detonation wave intensity elevates combustor intake blockage ratio, leading to higher upstream plenum pressure levels. Overall, this study demonstrates the significant potential of combined injection strategies in enhancing detonation wave intensity and fully exploiting the pressurization capability of detonation combustion. The work provides an innovative approach for structural design of RDAB, while clarifying future development directions. These findings hold crucial implications for advancing key technologies in turbine-based continuous detonation engine.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"235 ","pages":"Pages 639-652"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance enhancement of rotating detonation afterburner through combined injection scheme\",\"authors\":\"Jinhui Kang , Feilong Song , Xin Chen , Yun Wu , Dengcheng Zhang , Jiaojiao Wang , Zhao Yang , Wuyi Pan , Zhixin Wang\",\"doi\":\"10.1016/j.actaastro.2025.06.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a combined injection scheme to address the suboptimal fuel-oxidizer mixing efficiency in wide-throat configurations of rotating detonation afterburner (RDAB). Through comparative analysis of detonation wave propagation characteristics, combustor performance metrics, and matching stability parameters between wall injection and combined injection schemes, we demonstrate the operational advantages of implementing the combined injection strategy in RDAB system. The propagation characteristics of the detonation wave, the performance of the combustor, and the stability parameters of the component's coordinated operation were compared under the wall injection and the combined injection schemes. Key findings demonstrate that the combined injection approach successfully extends the fuel-lean limit of RDAB. However, this extension effect diminishes with decreasing nozzle exit area ratio. At A<sub>8</sub>/A<sub>3.1</sub> = 1.545, the fuel-lean limit improves from 0.84 to 0.73. Under higher nozzle exit area ratios, combined injection enhances detonation wave velocity, propagation stability, and wave strength. When the nozzle exit area ratio is relatively high, the use of a combined injection scheme can increase the detonation wave propagation speed, propagation stability, and detonation wave intensity, among which the increase in detonation wave intensity is the most significant, with the maximum increase in detonation wave intensity reaching 180 %. Regarding performance parameters, while the intensified detonation wave improve pressure gain capability, they simultaneously amplify upstream pulsating pressure feedback intensity. Due to the absence of an effective pulsating pressure feedback suppression structure, the intake loss of the combustor increases, resulting in a slightly lower total pressure recovery coefficient for the combined injection scheme compared to the wall injection scheme. In terms of system matching stability, enhanced detonation wave intensity elevates combustor intake blockage ratio, leading to higher upstream plenum pressure levels. Overall, this study demonstrates the significant potential of combined injection strategies in enhancing detonation wave intensity and fully exploiting the pressurization capability of detonation combustion. The work provides an innovative approach for structural design of RDAB, while clarifying future development directions. These findings hold crucial implications for advancing key technologies in turbine-based continuous detonation engine.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"235 \",\"pages\":\"Pages 639-652\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525003868\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525003868","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Performance enhancement of rotating detonation afterburner through combined injection scheme
This study proposes a combined injection scheme to address the suboptimal fuel-oxidizer mixing efficiency in wide-throat configurations of rotating detonation afterburner (RDAB). Through comparative analysis of detonation wave propagation characteristics, combustor performance metrics, and matching stability parameters between wall injection and combined injection schemes, we demonstrate the operational advantages of implementing the combined injection strategy in RDAB system. The propagation characteristics of the detonation wave, the performance of the combustor, and the stability parameters of the component's coordinated operation were compared under the wall injection and the combined injection schemes. Key findings demonstrate that the combined injection approach successfully extends the fuel-lean limit of RDAB. However, this extension effect diminishes with decreasing nozzle exit area ratio. At A8/A3.1 = 1.545, the fuel-lean limit improves from 0.84 to 0.73. Under higher nozzle exit area ratios, combined injection enhances detonation wave velocity, propagation stability, and wave strength. When the nozzle exit area ratio is relatively high, the use of a combined injection scheme can increase the detonation wave propagation speed, propagation stability, and detonation wave intensity, among which the increase in detonation wave intensity is the most significant, with the maximum increase in detonation wave intensity reaching 180 %. Regarding performance parameters, while the intensified detonation wave improve pressure gain capability, they simultaneously amplify upstream pulsating pressure feedback intensity. Due to the absence of an effective pulsating pressure feedback suppression structure, the intake loss of the combustor increases, resulting in a slightly lower total pressure recovery coefficient for the combined injection scheme compared to the wall injection scheme. In terms of system matching stability, enhanced detonation wave intensity elevates combustor intake blockage ratio, leading to higher upstream plenum pressure levels. Overall, this study demonstrates the significant potential of combined injection strategies in enhancing detonation wave intensity and fully exploiting the pressurization capability of detonation combustion. The work provides an innovative approach for structural design of RDAB, while clarifying future development directions. These findings hold crucial implications for advancing key technologies in turbine-based continuous detonation engine.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.