Mohammed A. Abdelmaguid, Hossam S. Hassanein, Mohammad Zulkernine
{"title":"确保不可预见的安全:用动态蜜罐和攻击率分析增强VANET安全性","authors":"Mohammed A. Abdelmaguid, Hossam S. Hassanein, Mohammad Zulkernine","doi":"10.1016/j.vehcom.2025.100946","DOIUrl":null,"url":null,"abstract":"Addressing known threats constitutes the foundational layer of cybersecurity defenses. However, the real challenge emerges in anticipating and mitigating unforeseen attacks. Current security methodologies work well against familiar threats but often struggle with new or unforeseen attacks. This paper examines the Trust Origin within Trust Management Systems (TMS) by linking it to the network attack rate, thereby refining trust assessments and predicting new attacks. Combining Machine Learning (ML) algorithms with honeypots, we offer a comprehensive defense for Vehicular Ad-hoc Networks (VANETs), adept at detecting anticipated and unexpected attacks through attack rate analysis. Our methodology evaluates the network's security status by examining its ability to identify known attacks, referred to as prepared-for attacks. Subsequently, this information serves as a foundation to predict future attacks that still need to be identified, termed unprepared-for attacks. Through extensive testing, we demonstrate the viability of a dual strategy that encompasses the detection of prepared-for attacks and the prediction of unprepared-for ones. Experimental results reveal a significant improvement in predicting unprepared-for attacks, evidenced by enhanced accuracy, precision, and recall. Additionally, we conduct experiments to determine the optimal deployment of honeypots for maximum efficiency.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"60 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing the Unforeseen: Enhancing VANET Security with Dynamic Honeypots and Attack Rate Analysis\",\"authors\":\"Mohammed A. Abdelmaguid, Hossam S. Hassanein, Mohammad Zulkernine\",\"doi\":\"10.1016/j.vehcom.2025.100946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing known threats constitutes the foundational layer of cybersecurity defenses. However, the real challenge emerges in anticipating and mitigating unforeseen attacks. Current security methodologies work well against familiar threats but often struggle with new or unforeseen attacks. This paper examines the Trust Origin within Trust Management Systems (TMS) by linking it to the network attack rate, thereby refining trust assessments and predicting new attacks. Combining Machine Learning (ML) algorithms with honeypots, we offer a comprehensive defense for Vehicular Ad-hoc Networks (VANETs), adept at detecting anticipated and unexpected attacks through attack rate analysis. Our methodology evaluates the network's security status by examining its ability to identify known attacks, referred to as prepared-for attacks. Subsequently, this information serves as a foundation to predict future attacks that still need to be identified, termed unprepared-for attacks. Through extensive testing, we demonstrate the viability of a dual strategy that encompasses the detection of prepared-for attacks and the prediction of unprepared-for ones. Experimental results reveal a significant improvement in predicting unprepared-for attacks, evidenced by enhanced accuracy, precision, and recall. Additionally, we conduct experiments to determine the optimal deployment of honeypots for maximum efficiency.\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.vehcom.2025.100946\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100946","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Securing the Unforeseen: Enhancing VANET Security with Dynamic Honeypots and Attack Rate Analysis
Addressing known threats constitutes the foundational layer of cybersecurity defenses. However, the real challenge emerges in anticipating and mitigating unforeseen attacks. Current security methodologies work well against familiar threats but often struggle with new or unforeseen attacks. This paper examines the Trust Origin within Trust Management Systems (TMS) by linking it to the network attack rate, thereby refining trust assessments and predicting new attacks. Combining Machine Learning (ML) algorithms with honeypots, we offer a comprehensive defense for Vehicular Ad-hoc Networks (VANETs), adept at detecting anticipated and unexpected attacks through attack rate analysis. Our methodology evaluates the network's security status by examining its ability to identify known attacks, referred to as prepared-for attacks. Subsequently, this information serves as a foundation to predict future attacks that still need to be identified, termed unprepared-for attacks. Through extensive testing, we demonstrate the viability of a dual strategy that encompasses the detection of prepared-for attacks and the prediction of unprepared-for ones. Experimental results reveal a significant improvement in predicting unprepared-for attacks, evidenced by enhanced accuracy, precision, and recall. Additionally, we conduct experiments to determine the optimal deployment of honeypots for maximum efficiency.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.