Michal Bartošák, Vladimír Mára, Tomáš Vražina, Miroslav Španiel, Ivo Šulák
{"title":"添加硼9% Cr马氏体钢的低周疲劳行为:温度、应变速率和应变幅值的影响","authors":"Michal Bartošák, Vladimír Mára, Tomáš Vražina, Miroslav Španiel, Ivo Šulák","doi":"10.1016/j.ijfatigue.2025.109110","DOIUrl":null,"url":null,"abstract":"The Low-Cycle Fatigue (LCF) behaviour of a boron-added 9% Cr martensitic stainless steel, COST FB2, was investigated at temperatures of 300 <mml:math altimg=\"si64.svg\" display=\"inline\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:math>, 600 <mml:math altimg=\"si64.svg\" display=\"inline\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:math>, and 650 <mml:math altimg=\"si64.svg\" display=\"inline\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:math>. Mechanical strain amplitudes were prescribed between <mml:math altimg=\"si188.svg\" display=\"inline\"><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\"si63.svg\" display=\"inline\"><mml:mrow><mml:mn>8</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, with four different strain rates ranging from <mml:math altimg=\"si193.svg\" display=\"inline\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mover accent=\"false\"><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mo accent=\"true\">¯</mml:mo></mml:mover><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s to <mml:math altimg=\"si199.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s applied at the higher test temperatures. Cyclic softening was observed under all the investigated loading conditions, driven by a reduction in dislocation density and lath coarsening, which became more pronounced at higher strain amplitudes and temperatures. Investigations into the damage mechanisms revealed transgranular cracking as the predominant failure mode, with the frequency of secondary cracks increasing with strain amplitude. At 600 <mml:math altimg=\"si64.svg\" display=\"inline\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:math> and 650 <mml:math altimg=\"si64.svg\" display=\"inline\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\"normal\">C</mml:mi></mml:mrow></mml:math>, environmentally assisted cracking and oxidation effects became more significant, especially at higher strain amplitudes and lower loading frequencies. Fatigue lifetime decreased with an increasing temperature and strain amplitude, and a decreasing strain rate. To account for the environmentally assisted cracking effects, a frequency-modified Manson–Coffin model was proposed. This modified model accurately captured the reduction in lifetime at lower mechanical strain rates.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"244 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cycle fatigue behaviour of boron-added 9% Cr martensitic steel: Effects of temperature, strain rate, and strain amplitude\",\"authors\":\"Michal Bartošák, Vladimír Mára, Tomáš Vražina, Miroslav Španiel, Ivo Šulák\",\"doi\":\"10.1016/j.ijfatigue.2025.109110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Low-Cycle Fatigue (LCF) behaviour of a boron-added 9% Cr martensitic stainless steel, COST FB2, was investigated at temperatures of 300 <mml:math altimg=\\\"si64.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:math>, 600 <mml:math altimg=\\\"si64.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:math>, and 650 <mml:math altimg=\\\"si64.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:math>. Mechanical strain amplitudes were prescribed between <mml:math altimg=\\\"si188.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> and <mml:math altimg=\\\"si63.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>8</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, with four different strain rates ranging from <mml:math altimg=\\\"si193.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mover accent=\\\"false\\\"><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mo accent=\\\"true\\\">¯</mml:mo></mml:mover><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s to <mml:math altimg=\\\"si199.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>/s applied at the higher test temperatures. Cyclic softening was observed under all the investigated loading conditions, driven by a reduction in dislocation density and lath coarsening, which became more pronounced at higher strain amplitudes and temperatures. Investigations into the damage mechanisms revealed transgranular cracking as the predominant failure mode, with the frequency of secondary cracks increasing with strain amplitude. At 600 <mml:math altimg=\\\"si64.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:math> and 650 <mml:math altimg=\\\"si64.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>°</mml:mo><mml:mi mathvariant=\\\"normal\\\">C</mml:mi></mml:mrow></mml:math>, environmentally assisted cracking and oxidation effects became more significant, especially at higher strain amplitudes and lower loading frequencies. Fatigue lifetime decreased with an increasing temperature and strain amplitude, and a decreasing strain rate. To account for the environmentally assisted cracking effects, a frequency-modified Manson–Coffin model was proposed. This modified model accurately captured the reduction in lifetime at lower mechanical strain rates.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"244 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2025.109110\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.109110","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Low-cycle fatigue behaviour of boron-added 9% Cr martensitic steel: Effects of temperature, strain rate, and strain amplitude
The Low-Cycle Fatigue (LCF) behaviour of a boron-added 9% Cr martensitic stainless steel, COST FB2, was investigated at temperatures of 300 °C, 600 °C, and 650 °C. Mechanical strain amplitudes were prescribed between 3×10−3 and 8×10−3, with four different strain rates ranging from 3.3¯×10−5/s to 1×10−2/s applied at the higher test temperatures. Cyclic softening was observed under all the investigated loading conditions, driven by a reduction in dislocation density and lath coarsening, which became more pronounced at higher strain amplitudes and temperatures. Investigations into the damage mechanisms revealed transgranular cracking as the predominant failure mode, with the frequency of secondary cracks increasing with strain amplitude. At 600 °C and 650 °C, environmentally assisted cracking and oxidation effects became more significant, especially at higher strain amplitudes and lower loading frequencies. Fatigue lifetime decreased with an increasing temperature and strain amplitude, and a decreasing strain rate. To account for the environmentally assisted cracking effects, a frequency-modified Manson–Coffin model was proposed. This modified model accurately captured the reduction in lifetime at lower mechanical strain rates.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.