Bokai Hu, Han Zhang, Caixia Jia, Ke Chen, Xiangjiang Tang, Da He, Luni Zhang, Shiyao Gu, Jing Chen, Jitong Zhang, Rong Wu, Sung-Liang Chen
{"title":"基于深度学习的超声造影图像和视频的颈动脉斑块自动多任务分割和易损性评估。","authors":"Bokai Hu, Han Zhang, Caixia Jia, Ke Chen, Xiangjiang Tang, Da He, Luni Zhang, Shiyao Gu, Jing Chen, Jitong Zhang, Rong Wu, Sung-Liang Chen","doi":"10.1109/JBHI.2025.3581686","DOIUrl":null,"url":null,"abstract":"<p><p>Intraplaque neovascularization (IPN) within carotid plaque is a crucial indicator of plaque vulnerability. Contrast-enhanced ultrasound (CEUS) is a valuable tool for assessing IPN by evaluating the location and quantity of microbubbles within the carotid plaque. However, this task is typically performed by experienced radiologists. Here we propose a deep learning-based multi-task model for the automatic segmentation and IPN grade classification of carotid plaque on CEUS images and videos. We also compare the performance of our model with that of radiologists. To simulate the clinical practice of radiologists, who often use CEUS videos with dynamic imaging to track microbubble flow and identify IPN, we develop a workflow for plaque vulnerability assessment using CEUS videos. Our multi-task model outperformed individually trained segmentation and classification models, achieving superior performance in IPN grade classification based on CEUS images. Specifically, our model achieved a high segmentation Dice coefficient of 84.64% and a high classification accuracy of 81.67%. Moreover, our model surpassed the performance of junior and medium-level radiologists, providing more accurate IPN grading of carotid plaque on CEUS images. For CEUS videos, our model achieved a classification accuracy of 80.00% in IPN grading. Overall, our multi-task model demonstrates great performance in the automatic, accurate, objective, and efficient IPN grading in both CEUS images and videos. This work holds significant promise for enhancing the clinical diagnosis of plaque vulnerability associated with IPN in CEUS evaluations.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Multi-Task Segmentation and Vulnerability Assessment of Carotid Plaque on Contrast-Enhanced Ultrasound Images and Videos via Deep Learning.\",\"authors\":\"Bokai Hu, Han Zhang, Caixia Jia, Ke Chen, Xiangjiang Tang, Da He, Luni Zhang, Shiyao Gu, Jing Chen, Jitong Zhang, Rong Wu, Sung-Liang Chen\",\"doi\":\"10.1109/JBHI.2025.3581686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intraplaque neovascularization (IPN) within carotid plaque is a crucial indicator of plaque vulnerability. Contrast-enhanced ultrasound (CEUS) is a valuable tool for assessing IPN by evaluating the location and quantity of microbubbles within the carotid plaque. However, this task is typically performed by experienced radiologists. Here we propose a deep learning-based multi-task model for the automatic segmentation and IPN grade classification of carotid plaque on CEUS images and videos. We also compare the performance of our model with that of radiologists. To simulate the clinical practice of radiologists, who often use CEUS videos with dynamic imaging to track microbubble flow and identify IPN, we develop a workflow for plaque vulnerability assessment using CEUS videos. Our multi-task model outperformed individually trained segmentation and classification models, achieving superior performance in IPN grade classification based on CEUS images. Specifically, our model achieved a high segmentation Dice coefficient of 84.64% and a high classification accuracy of 81.67%. Moreover, our model surpassed the performance of junior and medium-level radiologists, providing more accurate IPN grading of carotid plaque on CEUS images. For CEUS videos, our model achieved a classification accuracy of 80.00% in IPN grading. Overall, our multi-task model demonstrates great performance in the automatic, accurate, objective, and efficient IPN grading in both CEUS images and videos. This work holds significant promise for enhancing the clinical diagnosis of plaque vulnerability associated with IPN in CEUS evaluations.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3581686\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3581686","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automatic Multi-Task Segmentation and Vulnerability Assessment of Carotid Plaque on Contrast-Enhanced Ultrasound Images and Videos via Deep Learning.
Intraplaque neovascularization (IPN) within carotid plaque is a crucial indicator of plaque vulnerability. Contrast-enhanced ultrasound (CEUS) is a valuable tool for assessing IPN by evaluating the location and quantity of microbubbles within the carotid plaque. However, this task is typically performed by experienced radiologists. Here we propose a deep learning-based multi-task model for the automatic segmentation and IPN grade classification of carotid plaque on CEUS images and videos. We also compare the performance of our model with that of radiologists. To simulate the clinical practice of radiologists, who often use CEUS videos with dynamic imaging to track microbubble flow and identify IPN, we develop a workflow for plaque vulnerability assessment using CEUS videos. Our multi-task model outperformed individually trained segmentation and classification models, achieving superior performance in IPN grade classification based on CEUS images. Specifically, our model achieved a high segmentation Dice coefficient of 84.64% and a high classification accuracy of 81.67%. Moreover, our model surpassed the performance of junior and medium-level radiologists, providing more accurate IPN grading of carotid plaque on CEUS images. For CEUS videos, our model achieved a classification accuracy of 80.00% in IPN grading. Overall, our multi-task model demonstrates great performance in the automatic, accurate, objective, and efficient IPN grading in both CEUS images and videos. This work holds significant promise for enhancing the clinical diagnosis of plaque vulnerability associated with IPN in CEUS evaluations.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.