Aicheng Li, Mengdi Li, Si Xu, Li Niu, Shaolan Li, Yue Zhou, Zhilong Cao, Rixin Cai, Bingqiang He, Aisong Guo, Aihong Li, Honghua Song, Yongjun Wang, Yingjie Wang
{"title":"hif -1α诱导的星形细胞d -多巴胺自变性酶激活脊髓损伤后的小胶质细胞炎症反应。","authors":"Aicheng Li, Mengdi Li, Si Xu, Li Niu, Shaolan Li, Yue Zhou, Zhilong Cao, Rixin Cai, Bingqiang He, Aisong Guo, Aihong Li, Honghua Song, Yongjun Wang, Yingjie Wang","doi":"10.1016/j.ajpath.2025.05.015","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) often results in severe hypoxia and excessive activation of neuroinflammation, which aggravates neuropathology and neurologic dysfunction. D-dopachrome tautomerase (D-DT), the homolog of macrophage migration inhibitory factor, is a key proinflammatory mediator implicated in inflammatory diseases of multiple tissues. However, its relation with hypoxia and the potential impact on neuroinflammation following SCI remain elusive. Herein, the dynamic expression of D-DT, p65NF-κB, and the downstream proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 at the lesion site was determined following SCI. D-DT inhibitor 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid was applied to evaluate its effects on the inflammatory responses of the injured tissues. By using an in vitro cell model, the D-DT-mediated activation of microglia and the underlying regulatory mechanism were also investigated, showing that CD74/mitogen-activated protein kinase signaling was driven by D-DT to activate microglial inflammation. Analysis of rat D-DT promoter identified the binding element of hypoxia-inducible factor-1α. Hypoxia or dimethyloxallyl glycine stimulation of astrocytes was shown efficient in promoting the expression of hypoxia-inducible factor-1α and D-DT, whereas incubation of the microglia with the astrocytes' conditional medium was able to increase the production of tumor necrosis factor-α, IL-1β, and IL-6. Pharmacologic treatment of the subjects with 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid or LW6 following SCI remarkably promoted the recovery of rat locomotor function. The results have presented a novel neuropathologic function of D-DT, which might be beneficial for development of potential drug targeting neuroinflammation.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoxia-Inducible Factor-1α-Induced Astrocytic D-Dopachrome Tautomerase Activates Microglial Inflammatory Response following Spinal Cord Injury.\",\"authors\":\"Aicheng Li, Mengdi Li, Si Xu, Li Niu, Shaolan Li, Yue Zhou, Zhilong Cao, Rixin Cai, Bingqiang He, Aisong Guo, Aihong Li, Honghua Song, Yongjun Wang, Yingjie Wang\",\"doi\":\"10.1016/j.ajpath.2025.05.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) often results in severe hypoxia and excessive activation of neuroinflammation, which aggravates neuropathology and neurologic dysfunction. D-dopachrome tautomerase (D-DT), the homolog of macrophage migration inhibitory factor, is a key proinflammatory mediator implicated in inflammatory diseases of multiple tissues. However, its relation with hypoxia and the potential impact on neuroinflammation following SCI remain elusive. Herein, the dynamic expression of D-DT, p65NF-κB, and the downstream proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 at the lesion site was determined following SCI. D-DT inhibitor 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid was applied to evaluate its effects on the inflammatory responses of the injured tissues. By using an in vitro cell model, the D-DT-mediated activation of microglia and the underlying regulatory mechanism were also investigated, showing that CD74/mitogen-activated protein kinase signaling was driven by D-DT to activate microglial inflammation. Analysis of rat D-DT promoter identified the binding element of hypoxia-inducible factor-1α. Hypoxia or dimethyloxallyl glycine stimulation of astrocytes was shown efficient in promoting the expression of hypoxia-inducible factor-1α and D-DT, whereas incubation of the microglia with the astrocytes' conditional medium was able to increase the production of tumor necrosis factor-α, IL-1β, and IL-6. Pharmacologic treatment of the subjects with 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid or LW6 following SCI remarkably promoted the recovery of rat locomotor function. The results have presented a novel neuropathologic function of D-DT, which might be beneficial for development of potential drug targeting neuroinflammation.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2025.05.015\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.05.015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Spinal cord injury (SCI) often results in severe hypoxia and excessive activation of neuroinflammation, which aggravates neuropathology and neurologic dysfunction. D-dopachrome tautomerase (D-DT), the homolog of macrophage migration inhibitory factor, is a key proinflammatory mediator implicated in inflammatory diseases of multiple tissues. However, its relation with hypoxia and the potential impact on neuroinflammation following SCI remain elusive. Herein, the dynamic expression of D-DT, p65NF-κB, and the downstream proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 at the lesion site was determined following SCI. D-DT inhibitor 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid was applied to evaluate its effects on the inflammatory responses of the injured tissues. By using an in vitro cell model, the D-DT-mediated activation of microglia and the underlying regulatory mechanism were also investigated, showing that CD74/mitogen-activated protein kinase signaling was driven by D-DT to activate microglial inflammation. Analysis of rat D-DT promoter identified the binding element of hypoxia-inducible factor-1α. Hypoxia or dimethyloxallyl glycine stimulation of astrocytes was shown efficient in promoting the expression of hypoxia-inducible factor-1α and D-DT, whereas incubation of the microglia with the astrocytes' conditional medium was able to increase the production of tumor necrosis factor-α, IL-1β, and IL-6. Pharmacologic treatment of the subjects with 4-(3-carboxyphenyl)-2,5pyridinedicarboxylic acid or LW6 following SCI remarkably promoted the recovery of rat locomotor function. The results have presented a novel neuropathologic function of D-DT, which might be beneficial for development of potential drug targeting neuroinflammation.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.