绵羊声纹识别的多尺度时间特征融合框架

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Xipeng Wang , Delong Wang , Weijiao Dai , Cheng Zhang , Yudongchen Liang , Yong Zhou , Juan Yao , Fang Tian
{"title":"绵羊声纹识别的多尺度时间特征融合框架","authors":"Xipeng Wang ,&nbsp;Delong Wang ,&nbsp;Weijiao Dai ,&nbsp;Cheng Zhang ,&nbsp;Yudongchen Liang ,&nbsp;Yong Zhou ,&nbsp;Juan Yao ,&nbsp;Fang Tian","doi":"10.1016/j.atech.2025.101061","DOIUrl":null,"url":null,"abstract":"<div><div>Voiceprint recognition technology is an effective way to identify individual sheep; however, related research is lacking. To this end, we propose a hybrid model based on the ResNet18 network and gated recurrent units (GRUs) to comprehensively represent the input data. The model uses the feature pyramid network (FPN) structure and a one-dimensional convolutional block attention module (1D-CBAM) for feature fusion to enhance the classification ability of the model. This model is used to extract sheep voiceprint features and combined with the proposed similarity correction method to construct a sheep voiceprint recognition system. The model is trained on a dataset including 300 sheep from three different breeds. The results of 5-fold cross-validation experiments show that the average recognition accuracy (Acc) and average contrast accuracy (CA) of the model reach 98.86 % and 98.66 %, respectively, with an average equal error rate (EER) of 1.34 %, demonstrating that the improved method is stable and reliable for sheep voiceprint recognition. This study provides a new solution for the identification of individual sheep.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101061"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-scale temporal feature fusion framework for sheep voiceprint recognition\",\"authors\":\"Xipeng Wang ,&nbsp;Delong Wang ,&nbsp;Weijiao Dai ,&nbsp;Cheng Zhang ,&nbsp;Yudongchen Liang ,&nbsp;Yong Zhou ,&nbsp;Juan Yao ,&nbsp;Fang Tian\",\"doi\":\"10.1016/j.atech.2025.101061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Voiceprint recognition technology is an effective way to identify individual sheep; however, related research is lacking. To this end, we propose a hybrid model based on the ResNet18 network and gated recurrent units (GRUs) to comprehensively represent the input data. The model uses the feature pyramid network (FPN) structure and a one-dimensional convolutional block attention module (1D-CBAM) for feature fusion to enhance the classification ability of the model. This model is used to extract sheep voiceprint features and combined with the proposed similarity correction method to construct a sheep voiceprint recognition system. The model is trained on a dataset including 300 sheep from three different breeds. The results of 5-fold cross-validation experiments show that the average recognition accuracy (Acc) and average contrast accuracy (CA) of the model reach 98.86 % and 98.66 %, respectively, with an average equal error rate (EER) of 1.34 %, demonstrating that the improved method is stable and reliable for sheep voiceprint recognition. This study provides a new solution for the identification of individual sheep.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101061\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525002941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525002941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

声纹识别技术是识别绵羊个体的有效方法;然而,相关研究还很缺乏。为此,我们提出了一种基于ResNet18网络和门控循环单元(gru)的混合模型来全面表示输入数据。该模型采用特征金字塔网络(FPN)结构和一维卷积块关注模块(1D-CBAM)进行特征融合,增强了模型的分类能力。利用该模型提取羊声纹特征,并结合所提出的相似度校正方法构建羊声纹识别系统。该模型在包含300只羊的数据集上进行训练,这些羊来自三个不同的品种。5倍交叉验证实验结果表明,该模型的平均识别准确率(Acc)和平均对比准确率(CA)分别达到98.86%和98.66%,平均等错误率(EER)为1.34%,表明改进方法对羊声纹识别是稳定可靠的。本研究为羊的个体鉴定提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-scale temporal feature fusion framework for sheep voiceprint recognition
Voiceprint recognition technology is an effective way to identify individual sheep; however, related research is lacking. To this end, we propose a hybrid model based on the ResNet18 network and gated recurrent units (GRUs) to comprehensively represent the input data. The model uses the feature pyramid network (FPN) structure and a one-dimensional convolutional block attention module (1D-CBAM) for feature fusion to enhance the classification ability of the model. This model is used to extract sheep voiceprint features and combined with the proposed similarity correction method to construct a sheep voiceprint recognition system. The model is trained on a dataset including 300 sheep from three different breeds. The results of 5-fold cross-validation experiments show that the average recognition accuracy (Acc) and average contrast accuracy (CA) of the model reach 98.86 % and 98.66 %, respectively, with an average equal error rate (EER) of 1.34 %, demonstrating that the improved method is stable and reliable for sheep voiceprint recognition. This study provides a new solution for the identification of individual sheep.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信