SFDFNet:利用空频深度融合实现RGB-T语义分割

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guanhua An , Yuhe Geng , Shengyu Fang , Jichang Guo
{"title":"SFDFNet:利用空频深度融合实现RGB-T语义分割","authors":"Guanhua An ,&nbsp;Yuhe Geng ,&nbsp;Shengyu Fang ,&nbsp;Jichang Guo","doi":"10.1016/j.imavis.2025.105605","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the insensitivity to lighting variations, the RGB-Thermal (RGB-T) semantic segmentation models show significant potential in processing images captured under adverse conditions, such as low light and overexposure. Current RGB-T semantic segmentation methods usually rely on complex spatial domain fusion strategies, yet they neglect the complementary frequency characteristics of RGB and thermal modalities. Through frequency analysis, we find that thermal images focus on low-frequency information, while RGB images are rich in high-frequency details. Leveraging these complementary properties, we introduce the Spatial-Frequency Deep Fusion Network (SFDFNet), which employs a dual-stream architecture to enhance RGB-T semantic segmentation. Key innovations include the Distinctive Feature Enhancement Module (DFEM) to improve feature representation in both modalities and the Spatial-Frequency Fusion Module (SFFM), which integrates spatial and frequency features to optimize cross-modal fusion. Extensive experiments on three RGB-T datasets demonstrate the superior performance of our method, both qualitatively and quantitatively, compared to state-of-the-art models.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"161 ","pages":"Article 105605"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFDFNet: Leveraging spatial-frequency deep fusion for RGB-T semantic segmentation\",\"authors\":\"Guanhua An ,&nbsp;Yuhe Geng ,&nbsp;Shengyu Fang ,&nbsp;Jichang Guo\",\"doi\":\"10.1016/j.imavis.2025.105605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the insensitivity to lighting variations, the RGB-Thermal (RGB-T) semantic segmentation models show significant potential in processing images captured under adverse conditions, such as low light and overexposure. Current RGB-T semantic segmentation methods usually rely on complex spatial domain fusion strategies, yet they neglect the complementary frequency characteristics of RGB and thermal modalities. Through frequency analysis, we find that thermal images focus on low-frequency information, while RGB images are rich in high-frequency details. Leveraging these complementary properties, we introduce the Spatial-Frequency Deep Fusion Network (SFDFNet), which employs a dual-stream architecture to enhance RGB-T semantic segmentation. Key innovations include the Distinctive Feature Enhancement Module (DFEM) to improve feature representation in both modalities and the Spatial-Frequency Fusion Module (SFFM), which integrates spatial and frequency features to optimize cross-modal fusion. Extensive experiments on three RGB-T datasets demonstrate the superior performance of our method, both qualitatively and quantitatively, compared to state-of-the-art models.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"161 \",\"pages\":\"Article 105605\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625001933\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001933","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于对光照变化不敏感,RGB-Thermal (RGB-T)语义分割模型在处理弱光和过度曝光等不利条件下捕获的图像方面显示出巨大的潜力。目前的RGB- t语义分割方法通常依赖于复杂的空间域融合策略,而忽略了RGB和热模态的互补频率特性。通过频率分析,我们发现热图像集中于低频信息,而RGB图像则具有丰富的高频细节。利用这些互补特性,我们引入了空间-频率深度融合网络(SFDFNet),该网络采用双流架构来增强RGB-T语义分割。关键的创新包括显著特征增强模块(DFEM)和空间-频率融合模块(SFFM),前者用于改进两种模态下的特征表示,后者集成了空间和频率特征以优化跨模态融合。在三个RGB-T数据集上进行的大量实验表明,与最先进的模型相比,我们的方法在定性和定量方面都具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFDFNet: Leveraging spatial-frequency deep fusion for RGB-T semantic segmentation
Due to the insensitivity to lighting variations, the RGB-Thermal (RGB-T) semantic segmentation models show significant potential in processing images captured under adverse conditions, such as low light and overexposure. Current RGB-T semantic segmentation methods usually rely on complex spatial domain fusion strategies, yet they neglect the complementary frequency characteristics of RGB and thermal modalities. Through frequency analysis, we find that thermal images focus on low-frequency information, while RGB images are rich in high-frequency details. Leveraging these complementary properties, we introduce the Spatial-Frequency Deep Fusion Network (SFDFNet), which employs a dual-stream architecture to enhance RGB-T semantic segmentation. Key innovations include the Distinctive Feature Enhancement Module (DFEM) to improve feature representation in both modalities and the Spatial-Frequency Fusion Module (SFFM), which integrates spatial and frequency features to optimize cross-modal fusion. Extensive experiments on three RGB-T datasets demonstrate the superior performance of our method, both qualitatively and quantitatively, compared to state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信