硫族化合物掺杂Sr2UZnO6的结构、电子、光学和热电性质的从头算研究

IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Aya Chelh, Smahane Dahbi, Hamid Ez-Zahraouy
{"title":"硫族化合物掺杂Sr2UZnO6的结构、电子、光学和热电性质的从头算研究","authors":"Aya Chelh,&nbsp;Smahane Dahbi,&nbsp;Hamid Ez-Zahraouy","doi":"10.1016/j.ssc.2025.116024","DOIUrl":null,"url":null,"abstract":"<div><div>The first principal calculation based on the Density Functional Theory (DFT) is utilized in order to investigate the structural, electrical, optical, and thermoelectric properties of pure as well as chalcogenes doped at oxygen position of Sr<sub>2</sub>UZnO<sub>6</sub>. Using the PBE-GGA + mBJ approximation, we found that the band gap values for pure Sr<sub>2</sub>UZnO<sub>6</sub> are 2.081 eV. Additionally, the compounds under study, Sr<sub>2</sub>UZnO<span><math><msub><mrow></mrow><mrow><mn>6</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Y<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> (where Y = Te, Se, S, and x = 0.083), are p-type semiconductors with a direct band gap. Furthermore, the band gap decreased from 2.081 eV for pure Sr<sub>2</sub>UZnO<sub>6</sub> to 1.263 eV, 1.618 eV, and 1.486 eV for Sr<sub>2</sub>UZnO<sub>5.917</sub>Y<sub>0.083</sub> where Y = Te, Se, and S, respectively, following the substitution of chalcogen impurities on the oxygen site. In the visible range, the absorption can surpass <span><math><mrow><mn>2</mn><mo>.</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> due to the lowering of the band gap, particularly for Te-doped Sr<sub>2</sub>UZnO<sub>6</sub>. Furthermore, every structure studied is thermodynamically stable based on the enthalpy of formation. Additionally, all of the investigated compounds’ electrical and thermal conductivities rose with temperature, and type P behavior is suggested by the positive Seebeck coefficient values. In light of all these findings, we anticipate that Sr<sub>2</sub>UZnO<sub>5.917</sub>Y<sub>0.083</sub> (Y = Te, Se, S) doped compounds will be used as semiconductors in photovoltaic and thermoelectric devices.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116024"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab-initio study of the structural, electronic, optical, and thermoelectric properties of chalcogenide-doped Sr2UZnO6\",\"authors\":\"Aya Chelh,&nbsp;Smahane Dahbi,&nbsp;Hamid Ez-Zahraouy\",\"doi\":\"10.1016/j.ssc.2025.116024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The first principal calculation based on the Density Functional Theory (DFT) is utilized in order to investigate the structural, electrical, optical, and thermoelectric properties of pure as well as chalcogenes doped at oxygen position of Sr<sub>2</sub>UZnO<sub>6</sub>. Using the PBE-GGA + mBJ approximation, we found that the band gap values for pure Sr<sub>2</sub>UZnO<sub>6</sub> are 2.081 eV. Additionally, the compounds under study, Sr<sub>2</sub>UZnO<span><math><msub><mrow></mrow><mrow><mn>6</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Y<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> (where Y = Te, Se, S, and x = 0.083), are p-type semiconductors with a direct band gap. Furthermore, the band gap decreased from 2.081 eV for pure Sr<sub>2</sub>UZnO<sub>6</sub> to 1.263 eV, 1.618 eV, and 1.486 eV for Sr<sub>2</sub>UZnO<sub>5.917</sub>Y<sub>0.083</sub> where Y = Te, Se, and S, respectively, following the substitution of chalcogen impurities on the oxygen site. In the visible range, the absorption can surpass <span><math><mrow><mn>2</mn><mo>.</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> due to the lowering of the band gap, particularly for Te-doped Sr<sub>2</sub>UZnO<sub>6</sub>. Furthermore, every structure studied is thermodynamically stable based on the enthalpy of formation. Additionally, all of the investigated compounds’ electrical and thermal conductivities rose with temperature, and type P behavior is suggested by the positive Seebeck coefficient values. In light of all these findings, we anticipate that Sr<sub>2</sub>UZnO<sub>5.917</sub>Y<sub>0.083</sub> (Y = Te, Se, S) doped compounds will be used as semiconductors in photovoltaic and thermoelectric devices.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"404 \",\"pages\":\"Article 116024\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825001991\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825001991","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

利用基于密度泛函理论(DFT)的第一次主计算,研究了Sr2UZnO6氧位掺杂纯硫基因和硫基因的结构、电学、光学和热电性质。使用PBE-GGA + mBJ近似,我们发现纯Sr2UZnO6的带隙值为2.081 eV。此外,所研究的化合物Sr2UZnO6−xYx(其中Y = Te, Se, S和x = 0.083)是具有直接带隙的p型半导体。此外,Sr2UZnO6的带隙从纯Sr2UZnO6的2.081 eV减小到Sr2UZnO5.917Y0.083的1.263 eV、1.618 eV和1.486 eV,其中Y分别为Te、Se和S。在可见光范围内,由于带隙的减小,特别是te掺杂的Sr2UZnO6的吸收可以超过2.105cm−1。此外,根据生成焓,所研究的每个结构都是热力学稳定的。此外,所有化合物的电导率和导热系数均随温度升高而升高,且Seebeck系数为正,表明其为P型行为。基于这些发现,我们预计Sr2UZnO5.917Y0.083 (Y = Te, Se, S)掺杂化合物将用于光伏和热电器件的半导体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab-initio study of the structural, electronic, optical, and thermoelectric properties of chalcogenide-doped Sr2UZnO6
The first principal calculation based on the Density Functional Theory (DFT) is utilized in order to investigate the structural, electrical, optical, and thermoelectric properties of pure as well as chalcogenes doped at oxygen position of Sr2UZnO6. Using the PBE-GGA + mBJ approximation, we found that the band gap values for pure Sr2UZnO6 are 2.081 eV. Additionally, the compounds under study, Sr2UZnO6xYx (where Y = Te, Se, S, and x = 0.083), are p-type semiconductors with a direct band gap. Furthermore, the band gap decreased from 2.081 eV for pure Sr2UZnO6 to 1.263 eV, 1.618 eV, and 1.486 eV for Sr2UZnO5.917Y0.083 where Y = Te, Se, and S, respectively, following the substitution of chalcogen impurities on the oxygen site. In the visible range, the absorption can surpass 2.105cm1 due to the lowering of the band gap, particularly for Te-doped Sr2UZnO6. Furthermore, every structure studied is thermodynamically stable based on the enthalpy of formation. Additionally, all of the investigated compounds’ electrical and thermal conductivities rose with temperature, and type P behavior is suggested by the positive Seebeck coefficient values. In light of all these findings, we anticipate that Sr2UZnO5.917Y0.083 (Y = Te, Se, S) doped compounds will be used as semiconductors in photovoltaic and thermoelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信