无序超均匀非均质材料建模:微观结构表征、场波动和有效性质

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liyu Zhong , Sheng Mao , Yang Jiao
{"title":"无序超均匀非均质材料建模:微观结构表征、场波动和有效性质","authors":"Liyu Zhong ,&nbsp;Sheng Mao ,&nbsp;Yang Jiao","doi":"10.1016/j.actamat.2025.121218","DOIUrl":null,"url":null,"abstract":"<div><div>Disordered hyperuniform (DHU) materials are an emerging class of exotic heterogeneous material systems characterized by a unique combination of disordered local structures and a hidden long-range order, which endow them with unusual physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here, we consider material systems possessing continuously varying local material properties <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> (e.g., thermal or electrical conductivity), modeled via a random field. We devise quantitative microstructure representation of the material systems based on a class of analytical spectral density function <span><math><mrow><msub><mrow><mover><mrow><mi>χ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><msub><mrow></mrow><mrow><mi>K</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> associated with <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, possessing a power-law small-<span><math><mi>k</mi></math></span> scaling behavior <span><math><mrow><msub><mrow><mover><mrow><mi>χ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><msub><mrow></mrow><mrow><mi>K</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By controlling the exponent <span><math><mi>α</mi></math></span> and using a highly efficient forward generative model, we obtain realizations of a wide spectrum of distinct material microstructures spanning from hyperuniform (<span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>) to nonhyperuniform (<span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>) to antihyperuniform (<span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>) systems. Moreover, we perform a comprehensive perturbation analysis to quantitatively connect the fluctuations of the local material property to the fluctuations of the resulting physical fields. In the weak-contrast limit, i.e., when the fluctuations of the property are much smaller than the average value, our first-order perturbation theory reveals that the physical fields associated with Class-I hyperuniform materials (characterized by <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) are also hyperuniform, albeit with a lower hyperuniformity exponent (<span><math><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></math></span>). As one moves away from this weak-contrast limit, the fluctuations of the physical field develop a diverging spectral density at the origin, revealed by our higher-order analysis. We also establish an end-to-end mapping connecting the spectral density of the local material property to the overall effective conductivity of the material system via numerical homogenization. We show that the strong stealthy-like hyperuniform systems can achieve nearly optimal effective conductivity and observe a sharp decrease of the variance of effective properties across realizations as <span><math><mi>α</mi></math></span> increases from antihyperuniform values to hyperuniform values. Our results have significant implications for the design of novel DHU materials with targeted physical properties.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121218"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling disordered hyperuniform heterogeneous materials: Microstructure representation, field fluctuations and effective properties\",\"authors\":\"Liyu Zhong ,&nbsp;Sheng Mao ,&nbsp;Yang Jiao\",\"doi\":\"10.1016/j.actamat.2025.121218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disordered hyperuniform (DHU) materials are an emerging class of exotic heterogeneous material systems characterized by a unique combination of disordered local structures and a hidden long-range order, which endow them with unusual physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here, we consider material systems possessing continuously varying local material properties <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> (e.g., thermal or electrical conductivity), modeled via a random field. We devise quantitative microstructure representation of the material systems based on a class of analytical spectral density function <span><math><mrow><msub><mrow><mover><mrow><mi>χ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><msub><mrow></mrow><mrow><mi>K</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> associated with <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, possessing a power-law small-<span><math><mi>k</mi></math></span> scaling behavior <span><math><mrow><msub><mrow><mover><mrow><mi>χ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><msub><mrow></mrow><mrow><mi>K</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span>. By controlling the exponent <span><math><mi>α</mi></math></span> and using a highly efficient forward generative model, we obtain realizations of a wide spectrum of distinct material microstructures spanning from hyperuniform (<span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>) to nonhyperuniform (<span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span>) to antihyperuniform (<span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>) systems. Moreover, we perform a comprehensive perturbation analysis to quantitatively connect the fluctuations of the local material property to the fluctuations of the resulting physical fields. In the weak-contrast limit, i.e., when the fluctuations of the property are much smaller than the average value, our first-order perturbation theory reveals that the physical fields associated with Class-I hyperuniform materials (characterized by <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) are also hyperuniform, albeit with a lower hyperuniformity exponent (<span><math><mrow><mi>α</mi><mo>−</mo><mn>2</mn></mrow></math></span>). As one moves away from this weak-contrast limit, the fluctuations of the physical field develop a diverging spectral density at the origin, revealed by our higher-order analysis. We also establish an end-to-end mapping connecting the spectral density of the local material property to the overall effective conductivity of the material system via numerical homogenization. We show that the strong stealthy-like hyperuniform systems can achieve nearly optimal effective conductivity and observe a sharp decrease of the variance of effective properties across realizations as <span><math><mi>α</mi></math></span> increases from antihyperuniform values to hyperuniform values. Our results have significant implications for the design of novel DHU materials with targeted physical properties.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121218\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425005051\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425005051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无序超均匀(东华大学)材料是一类新兴的异质材料系统,其特征是无序的局部结构和隐藏的远程有序的独特组合,这赋予了它们不同寻常的物理性质,包括大的各向同性光子带隙,优越的抗断裂性,以及近乎最佳的电和热输运性质,仅举几例。在这里,我们考虑具有连续变化的局部材料特性K(x)K(x)(例如,导热性或导电性)的材料系统,通过随机场建模。我们基于一类与K(x)K(x)相关的解析谱密度函数χ ω K(K)设计了材料系统的定量微观结构表示,具有幂律小kk缩放行为χ ω K(K) ~ K αχ ω K(K) ~ K α。通过控制指数αα并使用高效的正演生成模型,我们获得了从超均匀(α>0α>0)到非超均匀(α=0α=0)到反超均匀(α<0α<0)系统的广泛的不同材料微观结构的实现。此外,我们进行了全面的扰动分析,定量地将局部材料性质的波动与产生的物理场的波动联系起来。在弱对比极限下,即当性质波动远小于平均值时,我们的一阶摄动理论揭示了与i类超均匀材料(特征为α≥2α≥2)相关的物理场也是超均匀的,尽管具有较低的超均匀指数(α−2α−2)。当人们远离这个弱对比极限时,物理场的波动在原点处形成发散的光谱密度,这是我们的高阶分析所揭示的。我们还建立了一个端到端的映射,通过数值均匀化将局部材料特性的谱密度与材料系统的整体有效电导率联系起来。研究表明,强隐身型超均匀系统可以获得接近最优的有效电导率,并且随着αα从反超均匀值增加到超均匀值,有效电导率的方差急剧减小。我们的研究结果对设计具有目标物理性能的新型东华大学材料具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling disordered hyperuniform heterogeneous materials: Microstructure representation, field fluctuations and effective properties
Disordered hyperuniform (DHU) materials are an emerging class of exotic heterogeneous material systems characterized by a unique combination of disordered local structures and a hidden long-range order, which endow them with unusual physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here, we consider material systems possessing continuously varying local material properties K(x) (e.g., thermal or electrical conductivity), modeled via a random field. We devise quantitative microstructure representation of the material systems based on a class of analytical spectral density function χ̃K(k) associated with K(x), possessing a power-law small-k scaling behavior χ̃K(k)kα. By controlling the exponent α and using a highly efficient forward generative model, we obtain realizations of a wide spectrum of distinct material microstructures spanning from hyperuniform (α>0) to nonhyperuniform (α=0) to antihyperuniform (α<0) systems. Moreover, we perform a comprehensive perturbation analysis to quantitatively connect the fluctuations of the local material property to the fluctuations of the resulting physical fields. In the weak-contrast limit, i.e., when the fluctuations of the property are much smaller than the average value, our first-order perturbation theory reveals that the physical fields associated with Class-I hyperuniform materials (characterized by α2) are also hyperuniform, albeit with a lower hyperuniformity exponent (α2). As one moves away from this weak-contrast limit, the fluctuations of the physical field develop a diverging spectral density at the origin, revealed by our higher-order analysis. We also establish an end-to-end mapping connecting the spectral density of the local material property to the overall effective conductivity of the material system via numerical homogenization. We show that the strong stealthy-like hyperuniform systems can achieve nearly optimal effective conductivity and observe a sharp decrease of the variance of effective properties across realizations as α increases from antihyperuniform values to hyperuniform values. Our results have significant implications for the design of novel DHU materials with targeted physical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信